
Rocket UniVerse

NLS User Guide

Version 11.3.1

October 2016
UNV-1131-NLS-1

2

Notices
Edition

Publication date: October 2016
Book number: UNV-1131-NLS-1
Product version: Version 11.3.1

Copyright
© Rocket Software, Inc. or its affiliates 1985-2016. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

3

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number

United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 800-720-1170
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Customer Portal is the primary method of obtaining support. If you have current support
and maintenance agreements with Rocket Software, you can access the Rocket Customer Portal and
report a problem, download an update, or read answers to FAQs. To log in to the Rocket Customer
Portal or to request a Rocket Customer Portal account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Customer Portal to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

4

Contents

Notices... 2

Corporate information... 3

Chapter 1: About National Language Support (NLS) mode.. 8
Internal character set... 8

About Unicode.. 8
Mapping... 8
Enabling NLS mode.. 9
The NLS configurable database.. 9

Maps...9
Locales... 10

National conventions... 10
How NLS mode works.. 12

Chapter 2: Installing and configuring NLS..13
Setting up the NLS map for the console...13
Removing NLS...13
NLS shared memory segments on UNIX systems...13
Making a plan..14
Setting configurable parameters...14

Editing the uvconfig file... 16
Setting default maps and locales..16

Moving NLS map and locale definitions... 17
Setting locales...17

UVLANG environment variable.. 17
System locale.. 17

Associating maps with devices..17
Mapping in the spool queue.. 18
Setting file maps...18
Setting terminal maps..19

Retrieving terminal settings...19
Setting maps tapes and other devices... 20
Updating accounts..20
Configuring NLS for client programs...20

Maps for client programs... 21
Configuring the code page on multibyte Windows platforms...21

Locales for client programs... 22
Configuration checklist.. 22

Chapter 3: Maps.. 25
How maps work.. 25

Main maps and input maps... 25
Base maps... 25

Creating a new map... 26
Map naming conventions...27
Creating new maps...27

Creating a map description... 28
Example of a map description record...29
Creating a map table..29
Example of a map table record... 30

Building and installing maps... 30
Multibyte NLS maps and system delimiters... 30
Handling extra characters..31

Contents

5

Defining new characters.. 31
Maps and files... 32

Assigning maps to new files.. 32
Modifying file maps.. 32

Chapter 4: Locales.. 33
How locales work... 33
Creating conventions..34
Creating new locales.. 35

Naming locales... 35
Format of convention records... 35

Time records... 35
Defining era names...37
Example... 37

Numeric records... 39
Monetary records..40
Ctype records.. 43
Collate records..45

Collating...48
How UniVerse collates..48
Example of accented collation.. 48
Example of cased collation..49
Shared weights and blocks..49
Contractions and expansions.. 49
Editing weight tables..50
Calculating the overall weight...50

Example of a weight table... 51
Using locales... 51

Retrieving locale settings...52
Saving and restoring locales..52
Listing current locales.. 52
Changing current locales... 52

Chapter 5: NLS in UniVerse BASIC programs..54
How UniVerse BASIC is affected.. 54

Using the UVNLS.H Include file..54
String length..55
Length of record IDs... 55

Display length in BASIC.. 55
Finding the display length of a string... 56
Formatting a string in display positions... 56
Folding strings using display positions...56
Inputting using display length with INPUTDP.. 56
Block size always in bytes... 56
The REMOVE pointer and multibyte character sets... 57

Maps in UniVerse BASIC... 57
Determining a file’s map name... 57
Maps for source files.. 58

Maps and devices... 58
Maps for auxiliary devices..58
@ Function codes for terminal and auxiliary maps... 58
Printing previously mapped data with UPRINT... 59
Finding the map associated with a print channel..59
Maps for UNIX pipes... 59

Unmappable characters...60
Unmappable characters and WRITE statements..60
Unmappable characters and READ statements... 61

Contents

6

Multinational characters in UniVerse BASIC... 61
Editing multinational characters...62
Generating characters in external format...63

Generating system delimiters and the null value.. 63
Generating characters in internal format... 64

CHAR and SEQ in NLS mode..64
Internal and external string conversion..64

NLS conversion code..64
MU0C conversion code...65
Other conversion codes... 66

Displaying records by character value..66
Exchanging character values... 67
Case inversion and deadkey characters... 67

BASIC and locales... 67
Retrieving locale settings...67
Saving and restoring locales..68
Changing the current locale.. 68

Chapter 6: NLS in client programs.. 69
Client programs.. 69

Maps...69
Locales... 70
System delimiters and the null value... 70

UniObjects... 70
NLSLocale object.. 70

UniObjects for Java and UniObjects for .NET...70
UniNLSMap object.. 70
UniNLSLocale object.. 71

InterCall functions.. 71
UCI programs.. 71

Connecting to the server..71
Requesting an SQLConnect... 71
Setting the map and locale... 72
Values in the UCI configuration file...72
Interpreting the map name... 72
Interpreting the locale name... 72
Using SQLGetInfo..73

BCI programs...73
Connecting to the server..73
Requesting an SQLConnect... 73
Setting the locale..73

Values in the uvodbc.config file.. 74
Interpreting the locale name... 74
Using SQLGetInfo..74

GCI subroutines...74
Specifying maps for GCI subroutines.. 75
Data types for multibyte characters... 75

Chapter 7: NLS administration menus..76
Unicode menu...76
Mappings menu.. 77
Locales menu.. 77
Categories menu...77
Installation menu..78

Appendix A: The NLS database..79

Appendix B: National convention hooks...81

Contents

7

General hook mechanism.. 81
Support from UniVerse...82
Memory management.. 83
Using hooks in UniVerse.. 83

Create a GCI definition for the initialization routine..83
Compile the hook library... 84
Build the hook library.. 84
Test the hooks.. 84
Install the hook library...84

NLS hook interface definitions.. 85
Hook functions..85

Appendix C: NLS quick reference.. 92
UniVerse commands...92
UniVerse BASIC statements and functions... 93
Map tables... 94
UniVerse locales..96
Unicode blocks..97

8

Chapter 1: About National Language Support
(NLS) mode

This chapter gives an overview of what NLS (National Language Support) is, why you need it, how it
works, and what you will find when you install NLS.

With NLS mode enabled, you can use UniVerse in various languages and countries. You can do the
following:

▪ Input data in many character sets (dependent on your local keyboard)

▪ Retrieve data and format it using your own conventions or those of another country

▪ Output data to a screen or printer using the character sets and display conventions of different
countries

▪ Write programs that run in different languages and countries without source changes or
recompilation

NLS mode works by using two types of character set:

▪ The NLS internal character set

▪ External character sets that cover the world’s different languages

In NLS mode, UniVerse maps between the two character sets when you input data to or output data
from a database.

Internal character set
In NLS mode, UniVerse stores data using a single, large, internal character set that can represent at
least 64,000 characters. Each character in the internal character set has a unique code point. This
is a number that is by convention represented in hexadecimal format. You can use this number to
represent the character in programs. UniVerse easily stores many languages. You can also customize
UniVerse to handle less common languages.

About Unicode

The NLS internal character set conforms to the Unicode standard. Unicode defines characters using
16-bit codes in 4-digit hexadecimal format. The Unicode standard gives unique character definitions
for many languages, as well as many symbols and special characters.

The Unicode standard forms part of ISO 10646. NLS complies with:

▪ ISO/IEC 10646-1:1993 Basic Multilingual Plane

▪ Unicode Version 2.0 (with the exception of Tibetan)

For more information about Unicode, see The Unicode Standard, Version 2.0, Addison Wesley, ISBN
0-201-48345-9, or the Unicode Consortium’s World Wide Web page at http://www.unicode.org.

Mapping
When you need to enter, list, print, or transfer data, NLS maps the data to or from the external
character set you want to use.

http://www.unicode.org

Enabling NLS mode

9

NLS includes map tables for many of the character sets used in the world (see the list in NLS quick
reference, on page 92). You can specify mapping for:

▪ UniVerse files

▪ Operating system files

▪ Terminals

▪ Keyboards and other input devices

▪ Printers (including auxiliary printers)

▪ Storage media

▪ Communications devices

Note: If your files contain only ASCII 7-bit characters, they need not be mapped.

Enabling NLS mode
After you install NLS, you can enable it for your UniVerse system (as described in Installing and
configuring NLS, on page 13). This means that any new accounts you create can use NLS
immediately, and you can update existing accounts to recognize NLS.

Warning: If NLS mode is enabled and you create UniVerse files containing non-ASCII data, a
UniVerse system without NLS installed and enabled will not recognize that data.

You do not need to recompile your existing applications in order to run them on a UniVerse system
with NLS enabled, but if you want to use the full capabilities of NLS, you may need to change your
applications. For more information about this, see NLS in UniVerse BASIC programs, on page 54.

The NLS configurable database
NLS has its own configurable database of UniVerse files in the nls subdirectory of the UV account
directory.

For a description of these files, see The NLS database, on page 79 and NLS administration menus,
on page 76.

This database contains:

▪ Information about the Unicode character set. For more information, see Maps, on page 25.

▪ Tables of character set maps. For more information, see NLS quick reference, on page 92.

▪ Tables of locales and national conventions that define how data is formatted for a particular
country or area. For more information, see Locales, on page 33.

When you install UniVerse with NLS enabled, the files in the database are configurable as well. This
means you can customize all the categories defined in each locale.

Maps

Maps define how UniVerse converts characters in the external character set to the internal character
set, and vice versa.

Chapter 1: About National Language Support (NLS) mode

10

The external character set is what the user sees and uses to input data on a keyboard, to print reports,
and so on. NLS quick reference, on page 92 shows the map tables that are supplied with UniVerse.
For more information about specifying the correct map for your system, see Setting default maps and
locales, on page 16.

Locales

Strictly speaking, a UniVerse NLS locale is a set of national conventions. A locale is viewed as
a separate entity from a character set. You need to consider the language, character set, and
conventions for data formatting that one or more groups of people use. You define the character
set independently, although for national conventions to work correctly, you must also use the
appropriate character sets. For example, Venezuela and Ecuador both use Spanish as their language,
but have different data formatting conventions.

Locales do not respect national boundaries. One country might use several locales, for example,
Canada uses two and Belgium uses three. Several countries might use one locale, for example, a
multinational business could define a worldwide locale to use in all its offices. NLS quick reference,
on page 92 lists all the locales that are supplied with UniVerse and the territories and languages
associated with them.

Note: This manual uses the term territory rather than country to describe an area that uses a
locale.

National conventions

A national convention is a standard set of rules that define data formatting a particular territory uses.

NLS supports the following national conventions:

▪ The format for times and dates

▪ The format for displaying numbers

▪ How to display monetary values

▪ Whether a character is alphabetic, numeric, nonprinting, and so on

▪ The order in which characters should be sorted (collation)

Time and date

Most territories have a preferred style for presenting times and dates. For times, this is usually a choice
between a 12-hour or 24-hour clock. For dates, there are more variations. The following table shows
some examples of formats used by different locales to express 9.30 PM on the first day of April in 1990:

Territory Time Date UniVerse locale

France 21h30 1.4.90 FR-FRENCH
U.S. 9:30 PM 4/1/90 US-ENGLISH
Japan 21:30 90.4.1 JP-JAPANESE

Numeric

This convention defines how numbers are displayed, including:

▪ The character used as the decimal separator (the radix character)

National conventions

11

▪ The character used as a thousands separator

▪ Whether leading zeros should be used for numbers 1 through –1

Note: Starting at 11.3.1, numerics in BASIC code must always follow the non-NLS standards.
Numerics are not affected by the current locale.

Strings are interpreted according to the locale in use at compilation time.

To avoid unexpected results, the locale at compile time must match the locale at runtime.

For example, the following numbers can all mean one thousand, depending on the locale you use:

Territory Number UniVerse locale

Ireland 1,000 IE-ENGLISH
Netherlands 1.000 NL-DUTCH
France 1 000 FR-FRENCH

Monetary

This convention defines how monetary values are displayed, including:

▪ The character used as the decimal separator. This may differ from the decimal separator used in
numeric formats.

▪ The character used as a thousands separator. This may differ from the thousands separator used in
numeric formats.

▪ The local currency symbol for the territory, for example, $, £, or ¥.

▪ The string used as the international currency symbol, for example, USD (US Dollars), NOK
(Norwegian Kroner), or ITL (Italian Lire).

▪ The number of decimal places used in local monetary values.

▪ The number of decimal places used in international monetary values.

▪ The sign used to indicate positive monetary values.

▪ The sign used to indicate negative monetary values.

▪ The relative positions of the currency symbol and any positive or negative signs in monetary
values.

The following table shows some examples of monetary formats different locales use:

Currency Format UniVerse locale

U.S. Dollars $123.45 US-ENGLISH
French Francs 123,45 F FR-FRENCH
German Marks DM123,45 DE-GERMAN
Portuguese Escudos 123$45 Esc PT-PORTUGUESE

Character type

This convention defines whether a character is alphabetic, numeric, nonprinting, and so on. This
convention also defines any casing rules, for example, some letters take an accent in lowercase but
not in uppercase.

Chapter 1: About National Language Support (NLS) mode

12

Collation

This convention defines the order in which characters are collated, that is, sorted. There can be many
variations in collation order within a single character set. For example, the character Ä follows A in
Germany, but follows Z in Sweden. For an explanation of how NLS determines the sort order for an
external character set, see How UniVerse collates, on page 48.

How NLS mode works
NLS mode works by using two types of character set:

▪ The NLS internal character set

▪ External character sets that cover the world’s different languages

In NLS mode, UniVerse maps between the two character sets when you input data to or output data
from a database.

13

Chapter 2: Installing and configuring NLS
You can install NLS on both UNIX and Windows platforms.

On UNIX platforms, install NLS from the Package menu of the UniVerse System Administration
menu.

On Windows platforms, install NLS from the UniVerse installation program at the same time you install
UniVerse. When installation is complete, use the NLS Administration menus to configure NLS to suit
your system.

For more information about installation procedures, see the Installation Guide. For more information
about the NLS Administration menus, see NLS administration menus, on page 76.

Setting up the NLS map for the console
When you install UniVerse on Windows platforms, be sure to set up the NLS map for the console
correctly. If the map is not set up correctly, UniVerse commands that are run stand-alone or from
UniVerse client/server products, such as UniAdmin, may not display messages correctly.

About this task

The default is probably something like PC850 or MS1252; however, this may not be correct for your
version of Windows. Choose an appropriate map, which may not be one of the PCxxx or MSxxxx maps.
For example, for the Korean version of Windows you should use KSC5601.

If you cannot set the map correctly during installation, correct it later as follows:

Procedure

1. Change directory to the UV account directory, for example, D:\U2\UV.
2. Decompile the console terminal definition:

bin\uvtidc console > tmpfile

3. Use a text editor to edit tmpfile. Change at80 and at81 to the name of the required NLS map
and save the file.

4. Compile the console terminal definition:
bin\uvtic tmpfile

Removing NLS
You cannot remove NLS from the system on Windows platforms. On UNIX platforms, select De-install
from the Package menu of the UniVerse System Administration menu.

NLS shared memory segments on UNIX systems
On UNIX systems, NLS shared memory segments can be identified by a key of the format aceexxxx
where xxxx is a four-digit number. You can see this by running the UNIX ipcs command. Under normal
circumstances there will be only one such segment when NLS is turned on.

However, occasionally you may see more than one segment. This happens if a uv -admin command
is run while users are logged on to UniVerse. uv -admin creates a new NLS shared memory segment

Chapter 2: Installing and configuring NLS

14

every time it runs. The old segment disappears as soon as the last user of that segment exits from
UniVerse.

Making a plan
Before you configure NLS you should make a plan. For most sites, configuration is simple. If you intend
to switch between unrelated character sets, such as Korean and Greek, your configuration will be
more complex. This is the information that you need before you start your configuration:

▪ The name of the character set maps you want to use for terminals, printers, files, client programs,
and GCI subroutines. For a list of map names, see Map tables, on page 94.

▪ The locales you want to use. For a list of locale names, see UniVerse locales, on page 96.

▪ How you want programs to behave when they encounter characters that cannot be mapped.

You can note the information you need on the configuration checklist at the end of this chapter.

Setting configurable parameters
You can set system-wide defaults for NLS in the uvconfig file. The defaults are stored as UniVerse
configurable parameters. You can specify:

▪ Whether NLS mode is on or off

▪ How UniVerse behaves if a character cannot be mapped during read or write operations

▪ Default maps for new files

▪ Default maps for files created outside NLS

▪ Default maps for terminals and other devices

▪ Default national conventions

The following table lists the NLS configurable parameters in the uvconfig file. The default values
in the following table may be different on your system. For a complete list of the configurable
parameters, see Administering UniVerse.

Parameter Description

NLSDEFDEVMAP Specifies the name of the default map to use for device input or output. This
map is used for all devices except printers that do not have a map specified
in the &DEVICE& file. The ASSIGN MAP command overrides this setting.
The default value is ISO8859-1+MARKS.

NLSDEFDIRMAP Specifies the name of the default map to use for type 1 and type 19 files
without assigned maps. This occurs if a type 1 or type 19 file was not
created on an NLS system and has not had a map defined for it by the
SET.FILE.MAP command. This map applies only to the data in records,
not to record IDs. The default value is ISO8859-1+MARKS.

NLSDEFFILEMAP Specifies the name of the default map to use for hashed files without
assigned maps. This occurs if a hashed file was not created on an NLS
system and has not had a map defined for it by the SET.FILE.MAP
command. The default value is ISO8859-1+MARKS.

NLSDEFGCIMAP Specifies the name of the default map to use for string arguments passed to
and from GCI subroutines. This map is used if the GCI subroutine does not
explicitly define a map. The default value is ISO8859-1+MARKS.

Setting configurable parameters

15

Parameter Description

NLSDEFPTRMAP Specifies the name of the default map to use for printer output. This map is
used if a printer does not have a map defined for it in the &DEVICE& file. The
default value is ISO8859-1+MARKS.

NLSDEFSEQMAP Specifies the name of the default map to use for sequential input or output
for files or devices without assigned maps. The SET.SEQ.MAP command
overrides this setting. The default value is ISO8859-1+MARKS.

NLSDEFSOCKMAP The name of the map to associate with sockets that are either explicitly
created through UniVerse BASIC APIs, or implicitly created through other
APIs, such as CallHTTP.

NLSDEFSRVLC Specifies the name of the default locale to use for passing data to and from
client programs. This locale is used if the client program does not specify a
server locale. The default value is ISO8859-1+MARKS.

NLSDEFSRVMAP Specifies the name of the default map to use for passing data to and from
client programs. This map is used if the client program does not specify a
server map. The default value is ISO8859-1+MARKS.

NLSDEFTERMMAP Specifies the name of the default map to use for terminal input or output.
This map is used if a terminal does not have a map defined for it in its
terminfo definition. The SET.TERM.TYPE MAP command overrides this
setting. The default value is ISO8859-1+MARKS.

NLSDEFUSRLC Specifies the default locale. The default value is OFF.
NLSLCMODE Specifies whether locales are enabled. A value of 0 indicates that locales are

disabled. A value of 1 or 2 indicates that locales are enabled. When the TIME
locale is on, the value of NLSLCMODE controls the first day of the week.
When set to 1, Sunday is the first day of the week. A setting of 2 results in
Monday being the first day of the week.

NLSMODE Turns NLS mode on or off. A value of 1 indicates NLS is on, a value of 0
indicates NLS is off. If NLS mode is off, UniVerse does not check any other
NLS parameters.

NLSNEWDIRMAP Specifies the name of the map to use for new type 1 and type 19 files
created when NLS mode is on. This map applies only to the data in records,
not to record IDs. The default value is ISO8859-1+MARKS.

NLSNEWFILEMAP Specifies the name of the map to use for new hashed files created when NLS
mode is on. A value of NONE (the default value) indicates that data is to be
held in the internal UniVerse character set.

NLSOSMAP Specifies the name of the map to use for file names or record IDs visible to
the operating system. This chiefly affects CREATE.FILE and record IDs
written to type 1 or type 19 files. The default value is ISO8859-1.

NLSREADELSE Specifies the action to take if characters cannot be mapped when a
record is read by a READ statement. A value of 1 indicates that the READ
statement takes the ELSE clause. A value of 0 indicates that unmappable
characters are returned as the Unicode replacement character 0xFFFD. The
default value is 1.

NLSWRITEELSE Specifies the action to take if characters cannot be mapped when data
is written to a record. A value of 1 indicates that the write aborts or
takes the ON ERROR clause (if there is one). A value of 0 indicates that
unmappable characters are converted to the file map’s unknown character
(for example, ?) before writing the record. When this happens, some data
may be lost.

Chapter 2: Installing and configuring NLS

16

Editing the uvconfig file

Use one of the following methods to set the configurable parameters in the uvconfig file:

▪ Choose Config Editor from the UniAdmin Main menu.

▪ Use the EDIT.CONFIG command.

▪ Choose Installation Edit uvconfig from the NLS Administration menu.

To see a sample of the current parameter settings, use the UniVerse command CONFIG DATA. For
information about the EDIT.CONFIG and CONFIG commands, see the User Reference Guide.

Setting default maps and locales
You need to plan what the maps for your files will need once you enable NLS. After enabling NLS,
check that terminals, printers, other devices, and existing files have maps set to your requirements.
This section describes how to set system-wide defaults for maps and locales. You must be a UniVerse
Administrator logged on to the UV account to do this. Later sections describe how to set maps and
locales for specific uses.

1. Decide which maps you need. See Map tables, on page 94 for a complete list of UniVerse NLS
maps. You can view the maps using the Mappingsoption of the NLS Administration menu. If you
cannot find a suitable map, you can define a new one. For more information about defining maps,
see Creating a new map, on page 26. If your operating system supports a different character
set from any of the maps already chosen, you have to choose and build another map for the
operating system.

2. Build the maps by choosing Mappings -> Build from the NLS Administration menu.
3. Set the NLS configurable parameters in the uvconfig file as follows:

▪ Set NLSMODE to 1. This turns NLS on for the whole system.

▪ If you want to use NLS locales, set NLSLCMODE to 1.

▪ If you want to specify a default locale for the whole system, set the NLSDEFUSERLC parameter
to the name of the locale you want to use. (For a list of locale names, see UniVerse locales, on
page 96. For more information about setting locales, see Setting locales, on page 17.)

▪ Set the NLSDEFTERMMAP and NLSDEFPTRMAP parameters to the map names you want for
your terminals and printers.

▪ If you have data in existing files, the file maps should match your terminal map. Set the
NLSDEFFILEMAP, NLSDEFDIRMAP, and NLSDEFSEQMAP parameters to this map name.

▪ Set the NLSNEWDIRMAP and NLSDEFDEVMAP parameters to match the terminal map.

▪ Set the NLSOSMAP parameter to the name of the map for the character set used by the
operating system.

Leave the NLSNEWFILEMAP parameter set to NONE. This ensures that new files are created in NLS
format. Leave all other NLS parameters set as shipped.
UniVerse checks that all the maps you defined have been built. If not, it builds them for you.

Configuration changes are not effective until the uvconfig file is compiled with uvregen, and
UniVerse has been stopped and restarted. For more details, see the information about configurable
UniVerse parameters in Administering UniVerse. When you restart UniVerse, NLS mode is on. You can
display the default map name associated with your terminal by entering TERM.

Moving NLS map and locale definitions

17

Moving NLS map and locale definitions

You can move NLS map and locale definitions from one system to another. Execute the following
steps:

1. Create a type 19 file in the UV account of the source system.
2. Copy the definition records from the NLS database files to the type 19 file. For maps, these

records come from the NLS.MAP.DESCS and NLS.MAP.TABLES files. For locales, these
records come from the NLS.LC.TIME, NLS.LC.NUMERIC, NLS.LC.MONETARY,
NLS.LC.CTYPE, and NLS.LC.COLLATE files. You may also need weight table information for
your Collate category if you defined specific weight tables.

3. Transfer the type 19 file to the target system.
4. Copy the definitions back into the appropriate NLS files.
5. Use NLS.ADMIN to build the maps and locales.
6. Load the maps and locales into shared memory using the documented method for your operating

system (see Building and installing maps, on page 30 and Creating new locales, on page 35.

Setting locales

UVLANG environment variable

To set your initial UniVerse locale, use the UVLANG environment variable. When you start a UniVerse
session, UniVerse retrieves the value of the UVLANG variable and checks to see if a locale of the
specified name is loaded. If it is, it becomes your current locale.

Direct UniVerse connections (uvsh), telnet connections, and BCI connections are all affected by the
UVLANG variable.

System locale

You can set a locale for your whole system with the NLSDEFUSERLC parameter in the uvconfig file.

This procedure is described in Setting default maps and locales, on page 16.

Users can set locales from the UniVerse prompt using the SET.LOCALE command. You can set locales
from UniVerse BASIC programs using the SETLOCALE function. You can also set locales from client
programs. For more information, see Locales, on page 70.

For more information about the locale database and how to customize locales, see Locales, on page
33.

Associating maps with devices
You can associate a map name with a printer or any other device defined in the &DEVICE& file. To do
this, add the map name in field 19 of the device’s record in &DEVICE&.

Chapter 2: Installing and configuring NLS

18

▪ If a device has a specific map defined in &DEVICE&, all input and output for the device use the map.

▪ If a device does not have a specific map defined in &DEVICE&, it uses the default specified in the
uvconfig file. The defaults are specified in the following parameters:
▫ NLSDEFPTRMAP, for printers

▫ NLSDEFDEVMAP, for other devices

On UNIX systems, you can specify a map for spooled output in the UniVerse spooler configuration file
(the UNIX file /usr/spool/uv/sp.config). The map should match the mapping specified for the
equivalent printer in the &DEVICE& file.

On Windows platforms, UniVerse supports the following two modes of operation for spooled output
(SETPTR mode 1):

▪ GDI mode, which uses the Windows printer driver

▪ Raw mode, which sends printed data to the printer without translation

In GDI mode, UniVerse translates printed text into calls to the Windows Graphics Device Interface,
constructing a printed image that uses the Windows printer driver.

If NLS is enabled, the printed text is converted to Unicode before being passed to the GDI. The
UniVerse administrator must install a font compatible with the characters used in the document.

In raw mode, the UniVerse print processor writes the text directly to the printer.

If NLS is enabled, UniVerse searches the &DEVICE& file for a record with the same name as the
Windows printer. If this record defines an NLS map, UniVerse applies the map to the printed text
before it is written to the printer. The UniVerse administrator must define a suitable map for the print
device being used.

UniVerse examines the default data type that is configured for the printer specified for each new print
job in order to select GDI mode or raw mode. You can change the mode using the SETPTR command
with the GDI and RAW keywords.

Mapping in the spool queue
The spool queue directory holds data in UniVerse internal format. When data reaches the printer,
UniVerse maps it to an external character set using the appropriate map for the device. When you
spool to a hold file, the spooler stores the data using the map associated with the &HOLD& directory.
UniVerse then maps the data again when it reaches the printer.

Note: If you use the UNIX command usp to spool jobs from outside UniVerse, the print job does
not come from an NLS environment and no mapping occurs when the job reaches the printer.

Setting file maps
For old files not created under NLS mode, UniVerse uses the default map specified in either the
NLSDEFFILEMAP or the NLSDEFDIRMAP parameter in the uvconfig file. For new files, UniVerse uses
the maps specified in the parameters NLSNEWFILEMAP and NLSNEWDIRMAP. If you want to set a
specific map for a file, use the SET.FILE.MAP command. If you want to convert an existing non-NLS
file to an NLS file, use the UNICODE.FILE command. For more information about these commands,
see the UniVerse User Reference.

Setting terminal maps

19

Setting terminal maps
UniVerse specifies the default setting for terminal maps in the uvconfig file NLSDEFTERMMAP
parameter.

You can also specify terminal maps in the terminfo file. See @ Function codes for terminal and
auxiliary maps, on page 58. If you want to set an explicit terminal map, use the SET.TERM.TYPE
command with the following syntax:

SET.TERM.TYPE [code] [MAP mapname] [AUXMAP mapname]

code specifies the terminal type. It is case-sensitive. If you omit code, the current terminal type is used
by default.

mapname must be built and loaded into shared memory.

Specify mapname as DEFAULT if you want to use the map specified for the corresponding terminal
type in the terminfo file. But if there is no default map defined in terminfo, SET.TERM.TYPE
uses the default specified in the uvconfig parameter NLSDEFTERMMAP.

If you want to set a map for an auxiliary printer attached to the terminal, use AUXMAP. If you do not
specify a map for an auxiliary printer, UniVerse uses the terminal’s map.

This example sets a terminal map without changing the terminal type:

>SET.TERM.TYPE MAP SHIFT-JIS

The next example sets the terminal type to VT220 and sets up an auxiliary printer map. The terminal
map is set up from the terminfo record or from the parameter NLSDEFTERMMAP.

>SET.TERM.TYPE VT220 AUXMAP JIS-EUC

For more information about the SET.TERM.TYPE command, see the User Reference Guide.

Retrieving terminal settings

You can use the TERM and GET.TERM.TYPE commands to list the terminal and auxiliary printer map
names. For example:

>TERM
 Terminal Printer
Page width : 80 80
Page depth : 24 66
Page skip : 0
LF delay : 0
FF delay : 2
Backspace : 8
Term map : SHIFT-JIS
AUX map : JIS-EUC
vt220
>GET.TERM.TYPE
DEC vt200/vt220 8 bit terminal (vt220)
Width : 80
Depth : 24
Map : SHIFT-JIS

Chapter 2: Installing and configuring NLS

20

Setting maps tapes and other devices
You can specify a map name for a tape device using the ASSIGN command. This command overrides
any map name given in the &DEVICE& file for device until you either unassign the device or specify
another map with an ASSIGN command.

The following example assigns the tape device MT0 to tape unit 0 and sets its map so that data is
written to the tape in the Korean standard character set KSC5601:

>ASSIGN MT0 TO MTU 0 MAP KSC5601

Updating accounts
Once NLS mode is enabled, all users who enter UniVerse have NLS mode on by default. All accounts
created after NLS mode is enabled can use NLS commands and functionality.

If you are installing NLS on a system that has previously been running UniVerse without NLS, you must
use the NLS.UPDATE.ACCOUNT command to update all existing accounts. This command ensures
that an account contains all of the correct VOC entries and converts relevant system files for NLS use,
for example, &SAVEDLISTS&. Run the command in all existing user accounts, including the UV account.

When you run the command in the UV account, it asks you if you want to convert SQL catalog files to
NLS format. If you are using SQL, answer yes . This enables you to create schema, table, and column
names containing multibyte characters. However, UniVerse does not support multibyte SQL identifiers
at this release.

Configuring NLS for client programs
If you access UniVerse through a client program, you must make sure that the client and the server are
working with the same character set and locales. Most client programs access UniVerse through one of
the following APIs:

▪ GCI (General Calling Interface)

▪ BCI (UniVerse BASIC SQL Client Interface)

▪ UniVerse ODBC

▪ UCI (Uni Call Interface)

▪ InterCall

▪ UniObjects

▪ UniObjects for Java

▪ UniObjects for .NET

Note: UniVerse handles all mapping for client programs on the server. This section describes
the configuration that the server needs. However, your client program can define the character
set and locales it uses, too. For more information about this, see NLS in client programs, on
page 69.

Maps for client programs

21

Maps for client programs

The NLS.CLIENT.MAPS file defines maps for client programs on the server. You define maps for
client programs by choosing Mappings > Clients > Create from the NLS Administration menu.

UniVerse prompts for the following information:

▪ A client type and character set identifier (see below).

▪ An optional description.

▪ An NLS map name that corresponds to the character set used on the client. This information
enables UniVerse to map the character set used on the client to the NLS maps known to UniVerse.
For a list of the map tables supplied with NLS, see NLS quick reference, on page 92.

The client type and character set identifier are in the following format:

client.type : char.set.ID

client.type identifies the type of client system and should be one of the following:

Client type Description

WIN For clients using, for example, UniObjects or InterCall programs on
Windows platforms.

UNX For clients using, for example, BCI and UCI programs on UNIX systems.

char.set.ID is a text string that identifies the character set used by the client. On Windows platforms,
the identifier is normally an integer, for example, 1252. On UNIX systems, the identifier can be any text.
An example of a complete client type and character set identifier is WIN:1252.

Each development environment differs in how you determine which char.set.ID to use. For example,
you can call something like the COleControl::AmbientLocaleID in an OLE application.

If UniVerse cannot find the client type and character set identifier, it uses a default. The default is
either WIN:DEFAULT or UNX:DEFAULT. If these defaults are not available on the system, UniVerse uses
the value specified in the uvconfig file for the NLSDEFSRVMAP parameter.

Configuring the code page on multibyte Windows platforms

On Windows platforms, the code page detected by UniVerse client programs may not be the real
code page in use. This information is returned by an operating system call and is outside the client’s
control. The code page information is passed to the server, which looks it up in the NLS.CLIENT.MAPS
file, part of the NLS database. If there is no entry in the file, UniVerse selects a default, either from
the NLS.CLIENT.MAPS file, if one exists, or from the NLSDEFSRVMAP configurable parameter in the
uvconfig file. It is possible that the server can select the wrong map for the client.

For example, suppose you are running on the Korean version of Windows. This returns the code page
number 1252, though the real code page is 949. The client sends an identifier of WIN:1252 to the
server. The server tries to find a record for WIN:1252. If it finds the entry that is shipped with UniVerse,
this sets the NLS map to MS1252, which is incorrect. You can do one of three things to resolve the
problem:

▪ Record id: WIN:1252 0001: Korean character set 0002: KSC5601+MARKS
Record id: WIN:1252
0001: Korean character set
0002: KSC5601+MARKS

Chapter 2: Installing and configuring NLS

22

▪ Delete the WIN:1252 entry and set the WIN:DEFAULT entry to point to the correct NLS map.

▪ Delete both WIN:1252 and WIN:DEFAULT entries and set the NLSDEFSRVMAP configurable
parameter to the correct NLS map.

The first of these options is preferable.

Locales for client programs

Locales for client programs are defined in the NLS.CLIENTS.LCS file on the server. You set a locale for a
client program by choosing Locales > Clients > Create from the NLS Administration menu.

The system prompts you to enter the following information:

▪ A client type and locale identifier (see below).

▪ An optional description.

▪ The name of the locale to use for the client program. This must be one of the UniVerse locale
names in NLS quick reference, on page 92.

The client type and locale identifier are in the following format:

client.type : locale.ID

client.type identifies the type of client system and should be one of the following:

Client type Description

WIN For clients using, for example, UniObjects or InterCall programs on
Windows platforms.

UNX For clients using, for example, BCI and UCI programs on UNIX systems.

locale.ID is a text string that identifies the locale used by the client. On Windows platforms, the
identifier is a hexadecimal number, for example, 0409. An example of a complete client type and locale
identifier is WIN:0409. On UNIX systems the identifier can be any text string.

Configuration checklist
Use this checklist when you configure NLS to prepare your files, programs, and system where required.

▪ Convert old files with UNICODE.FILE.

▪ Check client programs that use the following APIs:
▫ GCI (General Calling Interface)

▫ BCI (UniVerse BASIC SQL Client Interface)

▫ UniVerse ODBC

▫ UCI (Uni Call Interface)

▫ InterCall

▫ UniObjects

▫ UniObjects for Java

▫ UniObjects for .NET

▪ Modify UniVerse BASIC programs to account for the display width of characters.

Configuration checklist

23

▪ Modify UniVerse BASIC programs to change CHAR to UNICHAR to allow the full range of Unicode
characters. Use the special characters @FM, @SM, @VM, and so forth for the UniVerse system
delimiters.

▪ If you use transaction logging, you need to set the following configurable parameters in the
uvconfig file to these values:
▫ LOGBLSZ to 2048, or at least to 1024

▫ LOGBLNUM to 32, or at least to 16

▪ Use the BYTE function in your UniVerse BASIC programs if you need byte rather than character
operations.

▪ Rebuild secondary indexes if you converted data files to NLS.

▪ Convert type 25 and distributed files by creating new NLS files and copying the data into them. The
UNICODE.FILE command cannot convert them.

Description and possible
value

Parameter Your value

NLS Mode
1 = on; 0 = off. NLSMODE
Program Behavior for unmappable Characters
When reading a file, 1 = use
ELSE clause, and 0 = use
the Unicode replacement
character.

NLSREADELSE

When writing to a file, 1 =
the write fails, and 0 = use
the file map’s unknown
character.

NLSWRITEELSE

Map for New Files Created with NLS Mode On
Map name for hashed files. NLSNEWFILEMAP
Map name for type 1 and 19
files.

NLSNEWDIRMAP

Map name for record IDs in
type 1 or type 19 files.

NLSOSMAP

Default Maps for Existing Files Created with NLS Mode Off
Map name for hashed files. NLSDEFFILEMAP
Map name for type 1 and
type 19 files.

NLSDEFDIRMAP

Default Maps for Devices
Map for devices (except
printers).

NLSDEFDEVMAP

Map for printers. NLSDEFPTRMAP
Map for terminals. NLSDEFTERMMAP
Default Map for Sequential I/O
Map for sequential I/O for a
file or device.

NLSDEFSEQMAP

Default Maps for GCI Subroutines and Client Programs
Map for GCI string
arguments.

NLSDEFGCIMAP

Chapter 2: Installing and configuring NLS

24

Description and possible
value

Parameter Your value

Map for client program
data.

NLSDEFSRVMAP

Locale Settings
Locale mode, 1 = on and 0 =
off.

NLSLCMODE

The default locale for the
system.

NLSDEFUSERLC

Locale for client program
data.

NLSDEFSRVLC

25

Chapter 3: Maps
This chapter provides more detailed information about the maps supplied with UniVerse. The topics
covered include:

▪ How UniVerse maps work

▪ Map types

▪ How to create, build, and install maps

▪ Extending a character set to cover extra characters

How maps work
UniVerse provides a set of standard map descriptions and tables. Maps are stored in the following two
files in the NLS database:

▪ NLS.MAP.DESCS holds information about maps, such as whether they are singlebyte or
doublebyte, and what replacement character should be used for characters that cannot be
mapped.

▪ NLS.MAP.TABLES holds the character mappings themselves. Each code point in the external
character set is mapped to a code point in the UniVerse internal character set. Each map table
supplied with UniVerse has an entry in this file.

Before you can use a map in a program or a command, you must compile it and load it into shared
memory. See Example of a map table record, on page 30.

Any map name you supply to a program or command must be the ID of a record in the
NLS.MAP.DESCS file. Each map record in the file contains a pointer to a main map table and
optionally to an input map table in the NLS.MAP.TABLES file.

Main maps and input maps

Main maps define the input and output mapping for a character set. The mapping is two-way. External
byte sequences map to internal values on input, and back to the same external byte sequences on
output.

For a list of the map tables supplied with UniVerse, see NLS quick reference, on page 92.

Input map tables, also known as deadkey tables, are one-way. They define byte sequences that map
from external to internal values only. You use them to enter characters that a system can display on
the screen but that are not on the keyboard.

Base maps

A map can be based on another map. When it is, the record in the NLS.MAP.DESCS file also contains
a pointer to the base map. This map can be based on yet another map. To understand the complete
map you must follow the chain of base maps. For more information about the construction of a
map, choose Mappings -> Descriptions -> Xref and Mappings -> Tables ->h Xref from the NLS
Administration menu.

Chapter 3: Maps

26

For example, the map C0-CONTROLS is a singlebyte character set map using the C0-CONTROLS table.
It maps the set of 7-bit control characters. The italic comments are not part of the record but are
added here for clarity.

NLS.MAP.DESCS C0-CONTROLS
 0001 Standard ISO2022 C0 control set, chars 00-1F+7F
 0002 - Name of base map
 0003 SBCS
 0004 C0-CONTROLS - Name of map table
NLS.MAP.TABLES C0-CONTROLS
 0001 * FIRST 32 CONTROL CHARACTERS (IDENTITY MAP) + DEL
 0002 00-1F 0000
 0003 7F 007F

In general, you can construct larger maps from existing maps by adding another table. For example,
the map ASCII, which maps all of the 7-bit characters, is constructed by adding the table ASCII to the
map C0-CONTROLS:

NLS.MAP.DESCS ASCII
 0001 #Standard ASCII 7-bit set
 0002 C0-CONTROLS - Name of base map
 0003 SBCS
 0004 ASCII - Name of map table
NLS.MAP.TABLES ASCII
 0001 * 7-BIT ASCII, identity mapping to 1st 127 chars
 0002 * (not including control characters - see C0-CONTROLS)
 0003 20-7F 0020

Similarly the map C1-CONTROLS, which contains all 8-bit and 7-bit control characters, is constructed
by adding the table C1-CONTROLS to the map C0-CONTROLS:

NLS.MAP.DESCS C1-CONTROLS
 0001 Standard 8-bit ISO control set, 80-9F
 0002 C0-CONTROLS - Name of base table
 0003 SBCS
 0004 C1-CONTROLS - Name of map table
NLS.MAP.TABLES C1-CONTROLS
 0001 * ISO 8-BIT 32 CONTROL CHARACTERS (IDENTITY MAP)
 0002 80-9F 0080

You can further modify this map as required. The map ASCII+C1 is constructed by adding the table
ASCII to the map C1-CONTROLS, and the map ISO8859-1 by adding the table ISO8859-1 to the map
ASCII+C1.

Creating a new map

Complete the following steps to create new maps:

1. Find an existing map that most closely matches the required map.
2. Identify the characters that need to be mapped differently in the new map.
3. Create a new table in NLS.MAP.TABLES that contains only these new mappings.
4. Create the new map in NLS.MAP.DESCS by basing it on the existing map and adding the new

table.

The following example creates a map called MY.ASCII. This map is identical to the existing ASCII map,
except the input character 0x23 is mapped to the UK pound sign (pound) instead of the number
symbol (hash).

NLS.MAP.DESCS MY.ASCII

Map naming conventions

27

 0001 * Modified ASCII with UK pound
 0002 ASCII
 0003 SBCS
 0004 MY.POUND
NLS.MAP.TABLES MY.POUND
 0001 * Map input 0x23 to Unicode 00A3
 0002 23 00A3

Map naming conventions
Map names must contain only characters in the ASCII-7 character set. The following map names are
reserved and have special meanings:

Map name Description

AUX The map associated with the auxiliary printer.
CRT The map associated with the current terminal.
DEFAULT The default map.
LPTR The map associated with print channel 0.
NONE No mapping. UniVerse uses the internal character set.
UNICODE The map from or to the UniVerse internal set and Unicode 16-bit fixed width

external set.
UTF8 The map from or to the UniVerse internal set and UTF8 as described in ISO

10646. This involves mapping the UniVerse system delimiters to the Private
Use Area of Unicode.

Avoid defining a map that uses any of the following prefixes or suffixes that are associated with
existing groups of maps:

Map name Description

ASCII… Underlies most other code pages and defines the characters 0000 through
007F

BIG5… The de facto standard Chinese double-byte character set.
EBCDIC… IBM EBCDIC encodings.
GB… Chinese GB standards (for example, GB2312-80).
ISO8859-nn ISO 8859 series of single-byte character set standards.
KSC… Korean DBCS national standards (for example, KSC5601).
…JIS and JIS… Japanese DBCS national standards (for example, SHIFT-JIS and JIS-EUC).
MNEMONICS A large set of deadkey sequences for entering Unicode characters using the

form <xx>. For example, <Ye> enters the Yen symbol.
MAC… Apple Macintosh code pages (singlebyte character set).
MSnnnn Microsoft Windows code pages. nnnn is four decimal digits.
PCnnn IBM PC code pages. nnn is usually three decimal digits.

Creating new maps
You can create or edit map records by choosing the Mappings option from the NLS Administration
menu. Choose Tables for a map table or Descriptions for a map description. You can then choose one
of the following options:

Chapter 3: Maps

28

Option Description

List Lists all the tables or descriptions.
Create Creates a new record in the NLS database.
Edit Edits a record in the NLS database.
Delete Deletes a record in the NLS database.
Xref Prints cross-reference information on the record.

Creating a map description

When you create a map description, a new record is added to the NLS.MAP.DESCS file. You are
prompted to enter values for the fields in the new record.

The following table shows the fields in the file:

Field Name Description

0 Map ID The name used to specify the map in commands and
programs.

1 Map Description A description of the map.
2 Base Map ID The name of a map to base this one on. This value must be

the record ID of another record in the NLS.MAP.DESCS file.
3 Map type The value of this field must be either SBCS for a singlebyte

character set, or DBCS for a doublebyte or multibyte
character set. The default value is SBCS.

4 Table ID The record ID of the map table in the NLS.MAP.TABLES file
to which this map description refers. You do not need to
specify a value if the map table has the same ID as the map
description.

5 Display length The display length of all characters in the mapping table
specified in field 4. Most double-byte character sets have
some characters that print as two display positions on a
screen (for example, Hangul characters or CJK ideographs).
However, the same map will usually require that ASCII
characters are printed as one display position. This field
does not pick up a value from any base map description.
The default value is 1.

6 Unknown char seq. This field specifies the character sequence to substitute for
unknown characters that do not form part of the character
set. The value, which is a byte sequence in the external
character set, should be a hexadecimal number from one
to four bytes. The default value is 3F, the ASCII question
mark character. The default is used if neither this map nor
any underlying base map has a value in this field.

7 Compose seq. This field contains the character sequence to compose
hexadecimal Unicode values from one to four bytes. If
UniVerse detects the sequence on input, the next four bytes
entered are checked to see if they are hexadecimal values.
If so, the Unicode character with that value is entered
directly. If neither this map nor any base map has a value
in this field, you cannot input Unicode characters by this
means. A value of NONE overrides a compose sequence set
by an underlying map.

Example of a map description record

29

Field Name Description

8 Input Table ID The name of a map table in NLS.MAP.TABLES to be used for
inputting deadkey sequences.

9 Prefix string A string in hexadecimal numbers to be prefixed to all
external character mappings in the table referenced by
field 4. Used mainly for mapping Japanese character sets.

10 Offset value A value in hexadecimal numbers to be added to each
external mapping in the table referenced by field 4. If
prefixed by a minus sign, the value is subtracted. Used
mainly for mapping Japanese character sets.

Example of a map description record

This example shows the map description record for a custom map for a Korean character set. The italic
comments are not part of the actual record, but are added here for clarity.

0001: #KOREAN: EUC as described by KSC standard + local changes
0002: KSC5601 - map description record this is based on
0003: DBCS - this map is multibyte
0004: KSC-CHANGES - main table added to KSC5601
0005: 2 - all its characters are double-width
0006: A3BF - FULLWIDTH QUESTION MARK in KSC5601 code
0007: 5C5C - compose sequence is two backslashes \\
0008: MNEMONICS - name of the input table for deadkeys
0009: - not used
0010: - not used

Creating a map table

When you create a map table, a new record is added to the NLS.MAP.TABLES file. This is a type 19
file. Records in the file contain comments, and mappings between the external character set and a
Unicode code point. The mappings each occupy a single line and can be in any order.

▪ Blank lines and lines starting with # or * are treated as comments.

▪ Mapping lines must contain only two values:
▫ The first value represents a byte sequence of up to eight bytes in the external character set.

▫ The second value is its corresponding Unicode character value.

▪ Each value must be in hexadecimal notation and can be preceded by the characters 0x.

▪ The two values must be separated by at least one space or tab.

▪ A comment must follow the second value and be separated from it by at least one space or tab.

▪ The first value can be the start and end value of a range, separated by a hyphen (-). The second
value should be a single Unicode value corresponding to the start of the range.

▪ The second value can be one of the following special strings:

String Value Use

@IM xFF Item mark
@FM xFE Field mark
@VM xFD Value mark

Chapter 3: Maps

30

String Value Use

@SM xFC Subvalue mark
@TM xFB Text mark
@6M xFA The mark below text mark
@7M xF9 The mark two below text mark
@8M xF8 The mark three below text mark
@SQL.NULL x80 Internal representation of the null value

Example of a map table record

Here is an example of part of a map table record:

Part of the Latin-3 character set ISO8859/3. A contrived example.
The next line maps a range of bytes to the Unicode values
0080 through 00A0.
82-A0 0080
The next 3 lines map the bytes A1, A2, and A6.
A1 0126 LATIN CAPITAL LETTER H WITH STROKE
A2 02D8 BREVE
A6 0124 LATIN CAPITAL LETTER H WITH CIRCUMFLEX
The next 2 lines map control characters to SQL null and field
mark.
80 @SQL.NULL
81 @FM
The next line uses the explicit hexadecimal form of numbers, and
shows
how a 2-byte sequence is mapped to a Unicode character:
xA7A7 x4E0

Building and installing maps
To build a map, choose Mappings -> Build from the NLS Administration menu.

UniVerse prompts you to enter the name of a map description record. It also prompts if you want a
detailed report of the build to be written to a record called mapname in the NLS.MAP.LISTING file. If
you choose this option, when the map is built you are prompted to view it.

If there is a warning or error message, you must fix the problem before the map can be built. You must
edit either the map description or the map table records referenced by the map description named in
mapname.

The report in the NLS.MAP.LISTING file:

▪ Lists all mapping rules in the order of the external byte sequence

▪ Adds descriptions of the Unicode characters taken from the NLS.CS.DESCS file

Note: The report can be thousands of lines long for large double-byte character set maps.

Multibyte NLS maps and system delimiters
NLS provides maps for a number of multibyte character sets such as Japanese, Chinese, and Korean.
On their own these maps do not allow the UniVerse system delimiters to be used (which is also true

Handling extra characters

31

of the singlebyte maps). However, unlike the singlebyte maps, where it is possible to use the internal
values of the system delimiters in the external character set, this is not possible with the multibyte
maps because the system delimiters can be misinterpreted as lead bytes of multibyte characters.
For this reason, NLS provides versions of all the multibyte maps both with and without the UniVerse
system delimiters. The maps provided are as follows:

Without system
delimiters

With system delimiters

BIG5 BIG5+MARKS
GB2312 GB2312+MARKS
JIS-EUC+ JIS-EUC++MARKS
JIS-EUC JIS-EUC+MARKS
JIS-EUC2+ JIS-EUC2++MARKS
JIS-EUC2 JIS-EUC2+MARKS
KSC5601 KSC5601+MARKS
PRIME-SHIFT-JIS PRIME-SHIFT-JIS+MARKS
SHIFT-JIS SHIFT-JIS+MARKS
TAU-SHIFT-JIS TAU-SHIFT-JIS+MARKS

The UniVerse system delimiters are mapped into the following values for each character set:

Value (in hex) System delimiters

1A Text mark
1C Subvalue mark
1D Value mark
1E Field mark
1F Item mark

In addition, the null value is mapped to the hexadecimal value 19.

Handling extra characters
The character set mapping you want to use may not cover all the characters you need. First check to
see if the characters are already defined in a different area of Unicode.

For example, the Hangul language character set KSC5601-1987 supports only the 4500 Hangul
characters in daily use in Korea; many rarely used or historical characters are omitted. However,
Unicode supports over 11,000 Hangul characters. If you have a Korean system that supports more
Hangul than is available in KSC5601-1987, the characters you need are probably already available in
Unicode.

The same applies to Japanese Kanji and Korean Hanja, where the character you want may be
available as part of the unified Chinese character set.

Defining new characters

If Unicode does not define the character you need, you can create a character definition. Unicode
has a Private Use Area with values xE000 through xF8FF. This area has room for an additional 6400
characters. You can choose a Unicode value in that area and map your character to it.

Chapter 3: Maps

32

The Unicode standard reserves the area from F8FF downward for corporate use, and from E000
upward for individual users’ use. UniVerse uses the values F8F7 through F8FF for the UniVerse system
delimiters.

Warning: Take care when transferring data between sites. Both sites must agree on the use of
positions E000 upward in the Private Use Area, otherwise you lose data integrity.

Maps and files
In NLS mode, each UniVerse file has an associated map that defines the external character set for the
file. The maps are stored as follows:

▪ For type 1 and type 19 files, the map is stored as a file in the O/S directory.

▪ For all other UniVerse file types, the map name is stored in the file header.

Any files created with NLS mode turned off use the default maps defined by the configurable
parameters in the uvconfig file.

Assigning maps to new files

When you create a new UniVerse file, the CREATE.FILE command assigns a default map name to the
file. The default map name is defined in the uvconfig file as follows:

▪ The NLSNEWFILEMAP parameter defines the value for hashed files.

▪ The NLSNEWDIRMAP parameter defines the values for type 1 and type 19 files.

Modifying file maps

If you use a UniVerse BASIC program to open and read a file, you must ensure that the file map is the
one that your program expects. You can use a call to the FILEINFO function to determine the map
name. A file’s map name is also included in reports generated by the ANALYZE.FILE, FILE.STAT,
and GET.FILE.MAP commands.

The GET.FILE.MAP command retrieves the name of the map associated with a file. If there is no
map name associated with the file, the command gives the name of the default map to be used.

The LIST.MAPS command lists maps that are built and installed. The report includes the name and
description for each map.

You need to ensure that the map associated with the file you are working with is the one that you
want. Use the SET.FILE.MAP command when you need to set or modify the file map.

The SET.SEQ.MAP command specifies the map for you to use with UniVerse BASIC sequential I/O
statements if you cannot find an explicit map in the sequential file that you open.

Use the UNICODE.FILE command to convert a mapped file to an unmapped file, or vice versa,
without making a copy of the file. The conversion process first checks that all record IDs and data can
be read from the file using the correct map. If record IDs and data cannot be retrieved using the input
map, the command fails. If some characters cannot be converted using the output map, the records
are not written.

For full details about these file map commands, see the UniVerse User Reference.

33

Chapter 4: Locales
This chapter provides more information about how locales work, and how to modify the locales and
conventions supplied with UniVerse. The topics covered include:

▪ Creating locales and conventions

▪ The format of convention records

▪ How UniVerse collates

For more information about how locales work with BASIC, see BASIC and locales, on page 67.

How locales work
It is important to distinguish between a locale, a category, and a convention.

▪ A locale comprises a set of categories.

▪ A category comprises a set of conventions.

▪ A convention is a rule describing how data values are input or displayed.

In NLS each locale comprises five categories:

▪ Time

▪ Numeric

▪ Monetary

▪ Ctype

▪ Collate

Each category comprises various conventions specific to the type of data in each category.

For example, conventions in the Time category include the names of the days of the week, the strings
used to indicate AM or PM, the character that separates the hours, minutes, and seconds, and so forth.
This information is stored in files in the NLS database.

The following example shows the record for the US-ENGLISH locale:

Locale name..... USA
Description..... Country=USA, Language=English
Time/Date....... US-ENGLISH
Numeric......... DEFAULT
Monetary........ USA
Ctype........... DEFAULT
Collate......... DEFAULT
.
.
.

Each of the five categories has its own UniVerse file that stores the definitions for these categories. The
conventions are grouped together and identified by a name which is the record ID of an item in the
appropriate category file.

For example, the US-ENGLISH conventions for Time /Date are defined by a record ID of that name in
the NLS.LC.TIME file.

The NLS.LC.ALL file acts as an index for the locales. It contains a record for each locale, such as US-
ENGLISH, with fields for each category.

Chapter 4: Locales

34

Each field contains a pointer to a record in another file, which is the relevant category file. The Time
field has a pointer to a record in the NLS.LC.TIME file, the Numeric field has a pointer to a record in
the NLS.LC.NUMERIC file, and so on.

Each category field... Points to a record in the
corresponding file...

The US-ENGLISH locale record contains these
corresponding values...

Time NLS.LC.TIME USA
Numeric NLS.LC.NUMERIC DEFAULT
Monetary NLS.LC.MONETARY USA
Ctype NLS.LC.CTYPE DEFAULT
Collate NLS.LC.COLLATE DEFAULT

This means that a locale can be built from existing conventions without duplication. Different locales
can share conventions, and one convention can be based on another.

For example, Canada uses the locales CA-FRENCH and CA-ENGLISH. The two locales are not
completely different; they share the same Monetary convention. The records in the NLS.LC.ALL file for
the CA-FRENCH and CA-ENGLISH locales look like this:

Locale name..... CA-FRENCH
Description..... Country=Canada, Language=French
Time/Date....... CA-FRENCH
Numeric......... CA-FRENCH
Monetary........ CANADA
Ctype........... DEFAULT
Collate......... DEFAULT+ACCENT+CASE
.
.
.
Locale name..... CA-ENGLISH
Description..... Country=Canada, Language=English
Time/Date....... CA-ENGLISH
Numeric......... CA-ENGLISH
Monetary........ CANADA
Ctype........... DEFAULT
Collate......... DEFAULT
.
.
.

Notice that for both locales the Monetary field points to a record in the NLS.LC.MONETARY file called
CANADA. The other fields contain the appropriate value for the language concerned.

You examine the conventions defined for a locale using the NLS Administration menu. Enter the
command NLS.ADMIN in the UV account, choose Locales -> View. When prompted for a locale ID,
enter one of the IDs shown in NLS quick reference, on page 92.

Note: You must be logged on as a UniVerse Administrator to use NLS.ADMIN. For more information
about NLS Administration menus, see NLS administration menus, on page 76.

Creating conventions
The conventions supplied with UniVerse conform to international standards. For major languages you
should not need to create completely new conventions. To modify a convention, you create a new
convention based on an existing convention. An outline of the procedure is as follows:

Creating new locales

35

1. Plan your new convention. Study the format of the convention records in each category and
decide which fields you need to modify. See Format of convention records, on page 35.

2. From the NLS Administration menu, choose Categories. Then choose Time, Numeric, Monetary,
Ctype or Collate.

3. Using the View option, find a convention that looks like what you need. If you want to create a
Collate convention, you may also need to choose a suitable weight table. This is explained in
Collating, on page 48.

4. Choose the Create option to create the new convention.
5. Choose Edit to change the convention to suit your needs. UniVerse prompts you to edit and save

the record using ReVise.

Creating new locales
To make a new locale from existing conventions:

1. From the NLS Administration menu, choose Locales > Create. UniVerse prompts you to enter a
name for the new locale and the name of an existing locale to base it on.

2. UniVerse then prompts to make any changes to the record using ReVise.
3. Choose Build to build the new locale.

Naming locales

Locale names can be any string that is a valid UniVerse record ID. You must not use any string that
is the same as a VOC record ID. The locales shipped with UniVerse have names that use only ASCII-7
characters, but you can rename them using different character sets, as appropriate.

Format of convention records
The following sections describe the fields in convention records in the five categories:

▪ Time

▪ Numeric

▪ Monetary

▪ Ctype

▪ Collate

Time records

Convention records in the Time category are stored in the NLS.LC.TIME file. The following table
shows each field number, its display name, and a description for time and date information:

Field Name Description

0 Category Name The name of the convention.
1 Description A description of the convention. It usually includes the territory

that the convention applies to and the language it is used with.
2 Based on The name of another convention record in the NLS.LC.TIME

file on which this convention is based.

Chapter 4: Locales

36

Field Name Description

3 TIMEDATE format A format for combined time and date used by the UniVerse BASIC
TIMEDATE function and the TIME command. The value should
consist of an MT or TI time conversion code, and a D or DI date
conversion code. The two codes can be in any order. They should
be separated by a tab character, or a text or subvalue mark.

4 Full DATE format The full combined date and time format used by the TIME
command. The value should consist of an MT or TI time
conversion code, and a D or DI date conversion code. The two
codes can be in any order. They should be separated by a tab
character, or a text or subvalue mark.

5 Date ‘D’ format The default date format for the D conversion code. The value
should be any D or DI conversion code.

6 Date ‘DI’ format The default date format for the DI conversion code. The value
should be a D conversion code. The order is specified by the DMY
order (field 23). The separator is specified by the date separator
(field 24).

7 Time ‘MT’ format The default time format for the MT conversion code. The value
should be an MT conversion code. In most cases, use the value TI.

8 Time ‘TI’ format The format for the TI conversion code. The value should be an MT
conversion code that specifies separators. The default separator
is a colon (:) as specified by the time separator (field 25).

9 Days of the week A multivalued list of the full names of the days of the week. For
example, Monday, Tuesday. Fields 9 and 10 are associated multi-
valued fields; the same number of values must exist in each field.

10 Abbreviated A multivalued list of abbreviated names of the days of the week.
For example, Mon, Tue. See field 9.

11 Month names A multivalued list of the full names of the months of the year.
For example, January, February. Fields 11 and 12 are associated
multivalued fields; the same number of values must exist in each
field.

12 Abbreviated A multivalued list of abbreviated names of the months of the
year. For example, Jan, Feb. See field 11.

13 Chinese years A multivalued list of Chinese year names (Monkey to Sheep).
14 AM string A string used to denote times before noon in 12-hour formats.
15 PM string A string used to denote times after noon in 12-hour formats.
16 BC string A string to be added to dates before the date 01 Jan 0001 in the

Gregorian calendar. This corresponds to –718432, the UniVerse
internal date.

17 Era name A multivalued list of names of eras and their start dates,
beginning with the most recent, for example, Japanese Imperial
Era Heisei. This field can be used for any locale that uses a
calendar with several year zeros. For example, the Thai Buddhist
Era commencing 1/1/543 BC. See Defining era names, on page
37.

18 Start date Corresponding era start dates for the era names specified in
UniVerse internal date format.

19 HEADING/FOOTING

D format

A D or DI conversion code used in HEADING and FOOTING
statements.

Defining era names

37

Field Name Description

20 HEADING/FOOTING

T format

An MT or TI conversion code used in HEADING and FOOTING
statements.

21 Gregorian calendar
day 1

The date at which the calendar changes from Julian to Gregorian,
expressed as a UniVerse internal date. The default is –140607,
corresponding to 11 January 1583.

22 Number of days
skipped

The number of days to skip when the calendar changes from
Julian to Gregorian. The default is 10.

23 Default DMY order The order of day, month, and year, for example, DMY.
24 Default date separator The separator used between day, month, and year. The default is

the slash (/).
25 Default time separator The separator used between hours, minutes, and seconds. The

default is the colon (:).

Defining era names

The values in the ERA_NAMES field can contain the format code:

Name [%n] [string]

Name is the era name.

%n is a digit from 1 through 9, or the characters +, –, or Y.

string is any text string.

The %n syntax allows era year numbers to be included in the era name and indicates how the era year
numbers are to be calculated. If %n is omitted, %1 is assumed.

The rules for the %n syntax are as follows:

▪ %1 – %9: The number following the % is the number to be used for the first year n this era. This is
effectively an offset which is added to the era year number. This will usually be 1 or 2.

▪ %+: The era year numbers count backward relative to year numbers, that is, if era year number 1
corresponds to Julian year Y, year 2 corresponds to Y–1, year 3 to Y–2, and so forth.

▪ %– : The same as for %+, but uses negative era year numbers, that is, first year Y is –1, Y–1 is –2, Y–2
is –3, and so forth.

▪ %Y: Uses the Julian year numbers for the era year numbers. The year number will be displayed as a
4-digit year number.

The %+, %–, and %Y syntax should only be used in the last era name in the list of era names, that is,
the first era, since the list of era names must be in descending date order.

string allows any text string to be appended to the era name. It is frequently the case that the first year
or part-year of an era is followed by some qualifying characters. Therefore, the actual era is divided
into two values, each with the same era name, but one terminated by %1string and the other by %2.
You must define the era names accordingly.

Example

This example shows the contents of the records named DEFAULT and US-ENGLISH in the
NLS.LC.TIME file. The US-ENGLISH record is based on the ENGLISH.NAMES record. An empty
field specifies that its definition is derived from any category on which it is based. If there is no base
category, the default category is used.

Time/Date Conventions for Locale DEFAULT

Chapter 4: Locales

38

Category name............ DEFAULT
Description.............. System defaults
Based on.................
TIMEDATE format.......... MTS
 . D4
Full DATE format......... D4WAMADY[", ", " ", ", "]
 . MT
Date 'D' format.......... D4 DMBY
Date 'DI' format......... D2-YMD
Time 'MT' format......... TI
Time 'TI' format......... MTS:
Days of the week..
Abbreviated.........
Sunday Sun
Monday Mon
Tuesday Tue
Wednesday Wed
Thursday Thu
Friday Fri
Saturday Sat Month names...
Abbreviated.........
January Jan
February Feb
March Mar
April Apr
May May
June Jun
July Jul
August Aug
September Sep
October Oct
November Nov
December Dec
Chinese years............ MONKEY
 . COCK
 . DOG
 . BOAR
 . RAT
 . OX
 . TIGER
 . RABBIT
 . DRAGON
 . SNAKE
 . HORSE
 . SHEEP
AM string................ am
PM string................ pm
BC string................ BC
Era name................................ Start date....
Heisi 08 JAN 1989
Showa 25 DEC 1926
Taisho 30 JUL 1912
Meiji 08 SEP 1868
HEADING/FOOTING D format. D2-
HEADING/FOOTING T format. MTS
 . D2-
Gregorian calendar day 1. 11 JAN 1583
Number of days skipped... 10
Default DMY order........
Default date separator...
Default time separator...

Numeric records

39

Time/Date Conventions for US-ENGLISH

Category name............ US-ENGLISH
Description.............. Territory=USA, Language=English
Based on................. .ENGLISH.NAMES
TIMEDATE format..........
Full DATE format.........
Date 'D' format..........
Date 'DI' format......... D2/MDY
Time 'MT' format.........
Time 'TI' format......... MTHS:
Days of the week.........................Abbreviated.........

Month names............................. Abbreviated.........
 0Chinese years............
AM string................
PM string................
BC string................
Era name................................ Start date....

HEADING/FOOTING D format.
HEADING/FOOTING T format.
Gregorian calendar day 1.
Number of days skipped...
Default DMY order........ MDY
Default date separator...
Default time separator...

Numeric records

Convention records in the Numeric category are stored in the NLS.LC.NUMERIC file. The following
table shows each field number, its display name, and a description:

Note: Starting at 11.3.1, numerics in BASIC code must always follow the non-NLS standards.
Numerics are not affected by the current locale.

Strings are interpreted according to the locale in use at compilation time.

To avoid unexpected results, the locale at compile time must match the locale at runtime.

Field Name Description

0 Category Name The name of the convention.
1 Description A description of the convention. It usually includes the territory

that the convention applies to and the language it is used with.
2 Based on The name of another convention record in the

NLS.LC.NUMERIC file that this convention is based on.
3 Decimal separator The character used as a decimal separator (radix character).

The value can be expressed as either a single character or the
hexadecimal Unicode value of a character.

4 Thousands separator The character used as a thousands separator. The value can
be expressed as either a single character or the hexadecimal
Unicode value of a character. Use the value NONE to indicate that
no separator is needed.

Chapter 4: Locales

40

Field Name Description

5 Suppress leading zero Defines whether leading zeros should be suppressed for numbers
in the range 1 through –1. A value of 0 or N means insert a zero;
any other value suppresses the zero.

6 Alternative digits

(0 first)

A multivalued field containing 10 values that can be used as
alternatives to the corresponding ASCII digits 0 through 9.

This example shows the contents of the records named DEFAULT and DEC.COMMA+DOT locale
(used by DE-GERMAN) in the NLS.LC.NUMERIC file. The DEC.COMMA+DOT conventions are based on
DEFAULT.

Numeric Conventions for DEFAULT

Category name......... DEFAULT
Description........... System defaults: Decimal separator =
 dot, thousands = comma
Based on..............
Decimal separator..... . - FULL STOP
Thousands separator... , - COMMA
Suppress leading zero. 0
Alternative digits (0 first).

Numeric Conventions for DEC.COMMA+DOT

Category name......... DEC.COMMA+DOT
Description........... Decimal separator = comma, thousands =
 dot
Based on.............. DEFAULT
Decimal separator..... , - COMMA
Thousands separator... . - FULL STOP
Suppress leading zero.
 Alternative digits (0 first).

Monetary records

Convention records in the Monetary category are stored in the NLS.LC.MONETARY file. The following
table shows each field number, its display name, and a description:

Field Name Description

0 Category Name The name of the convention.
1 Description A description of the convention. It usually includes the territory

that the convention applies to and the language it is used with.
2 Based on The name of another convention record in the

NLS.LC.MONETARY file on which this category is based.
3 Monetary decimal

separator
The character used as a decimal separator (radix character).
You do not need to specify a value if this character is the same
as the one in the decimal separator field in the corresponding
convention in NLS.LC.NUMERIC.

4 Monetary thousands
separator

The character used as a thousands separator. You do not need
to specify a value if this character is the same as the one in the
thousands separator field in the corresponding convention in the
NLS.LC.NUMERIC file.

Monetary records

41

Field Name Description

5 Local currency symbol A character or string used as the local currency symbol, for
example, $ or ¥. Leading or trailing spaces are not included.

6 International currency
symbol

The international currency symbol. The value should consist of
three uppercase ASCII characters as specified in the ISO 4217
standard. For example, USD. Trailing spaces are included. This
symbol always precedes the amount it refers to

7 Decimal places The number of decimal places in monetary amounts when used
with the local currency symbol is used.

8 International decimal
places

The number of decimal places in monetary amounts when used
with the international currency symbol (field 6).

9 Positive sign The sign used to indicate positive monetary amounts. If the
value consists of two characters, these are used to parenthesize
positive monetary amounts (one used at either end of the
monetary format). Use the value NONE to omit a positive sign

10 Negative sign The sign used to indicate negative monetary amounts. If the
value consists of two characters, these are used to parenthesize
negative monetary amounts (one used at either end of the
monetary format). Use the value NONE to omit a negative sign.

11 Positive currency
format

The format for positive monetary amounts. This is expressed
using a combination of the characters $ S + 1 and a space. The
$ or S represents the local currency symbol. 1 represents the
monetary amount. + represents the positive sign. If the positive
sign (field 9) contains two characters, the + sign is ignored.
For example, the value $1 in a US locale results in the format
$1,234.56. The value 1 $ in a GERMAN locale results in the format
1.234,56 DM.

12 Negative currency
format

The format for negative monetary amounts. This is expressed
using a combination of the characters $ S – 1 and a space. The
$ or S represents the local currency symbol. 1 represents the
monetary amount. – represents the negative sign. If the negative
sign (field 10) contains two characters the – sign is ignored. For
example, the value –$1 in a PORTUGUESE locale results in the
format –1,234$56. The value $ –1 in a DUTCH locale results in the
format F –1.234,56.

This example shows the contents of the record named DEFAULT in NLS.LC.MONETARY, followed by
records for NETHERLANDS, ITALY, NORWAY and PORTUGAL, which show different combinations of
fields:

Numeric Conventions for DEFAULT

Category name................. DEFAULT
Description................... System defaults
Based on......................
Monetary decimal separator.... . - FULL STOP
Monetary thousands separator.. , - COMMA
Local currency symbol......... $ - DOLLAR SIGN
International currency symbol. USD<SP>
Decimal places................ 2
International decimal places.. 2
Positive sign................. NONE
Negative sign................. - - HYPHEN-MINUS
Positive currency format...... S1
Negative currency format...... S-1

Chapter 4: Locales

42

Monetary Conventions for NETHERLANDS

Category name................. NETHERLANDS
Description................... Territory=Netherlands
Based on......................
Monetary decimal separator.... , - COMMA
Monetary thousands separator.. . - FULL STOP
Local currency symbol......... Fl
International currency symbol. NLG<SP>
Decimal places................ 2
International decimal places.. 2
Positive sign................. NONE
Negative sign................. - - HYPHEN-MINUS
Positive currency format...... S 1
Negative currency format...... S 1-

Monetary Conventions for ITALY

Category name................. ITALY
Description................... Territory=Italy
Based on......................
Monetary decimal separator.... , - COMMA
Monetary thousands separator.. . - FULL STOP
Local currency symbol......... L.
International currency symbol. ITL.
Decimal places................ 0
International decimal places.. 2
Positive sign.................
NONE Negative sign................. - - HYPHEN-MINUS
Positive currency format...... S1
Negative currency format...... -S1

Monetary Conventions for NORWAY

Category name................. NORWAY
Description................... Territory=Norway
Based on......................
Monetary decimal separator.... , - COMMA
Monetary thousands separator.. . - FULL STOP
Local currency symbol......... kr
International currency symbol. NOK<SP>
Decimal places................ 2
International decimal places.. 2
Positive sign.................
NONE Negative sign................. - - HYPHEN-MINUS
Positive currency format...... S1
Negative currency format...... S1-

Monetary Conventions for PORTUGAL
Category name............... PORTUGAL
Based on Category name................. PORTUGAL
Description................... Territory=Portugal
Based on......................
Monetary decimal separator.... $ - DOLLAR SIGN
Monetary thousands separator.. . - FULL STOP
Local currency symbol......... NONE
International currency symbol. PTE<SP>
Decimal places................ 2
International decimal places.. 2
Positive sign.................
NONE Negative sign................. - - HYPHEN-MINUS

Ctype records

43

Positive currency format...... 1 S
Negative currency format...... -1 S

The following table shows how the data in the previous records affect monetary formats:

Locale name Positive format Negative format International format

DEFAULT $1,234.56 $–1,234.56 USD 1,234.56
NETHERLANDS Fl 1.234,56 Fl 1.234,56– NLG 1.234,56
ITALY (see Note) L.1.234 –L.1.234 ITL.1.234
NORWAY kr1.234,56 kr1.234,56– NOK 1.234,56
PORTUGAL 1.234$56 –1.234$56 PTE 1,234$56

Note: Italian lire are usually quoted in whole numbers only. Your programs must detect that the
DEC_PLACES and INTL_DEC_PLACES fields contain zero in this case, and not hard code an MD2
conversion. An MM conversion handles the scaling automatically.

Ctype records

Convention records in the Ctype category are stored in the NLS.LC.CTYPE file. The following table
shows each field number, its display name, and a description.

Note: For fields 3 onward, you can enter the values as characters or as Unicode values. You can
specify a range of values separated by a dash (–).

Field Name Description

0 Category Name The name of the convention.
1 Description A description of the convention. It usually includes the territory

to which the convention applies and the language with which it is
used.

2 Based on The name of another convention record in the NLS.LC.CTYPE
file on which this convention is based.

3 Lowercase A multivalued list of lowercase values whose associated
uppercase values differ from the defaults in NLS.CS.CASES.

4 ->Upper A multivalued list of the equivalent uppercase values for the
characters listed in field 3.

5 Uppercase A multivalued list of uppercase values whose associated
lowercase values differ from the defaults in NLS.CS.CASES.

6 ->Lower A mutivalued list of the equivalent lowercase values for the
characters listed in field 5.

7 Alphabetics A multivalued list of characters that are alphabetic, but are not
described as such in the NLS.CS.ALPHAS file. You can specify
this value as a Unicode block value using the format BLOCK=nn,
where nn is the Unicode block number.

8 Non-Alphabetics A multivalued list of characters that are not alphabetic, but are
described as such in the NLS.CS.ALPHAS file. You can specify
this value as a Unicode block value using the format BLOCK=nn,
where nn is the Unicode block number.

Chapter 4: Locales

44

Field Name Description

9 Numerics A multivalued list of characters that should be considered as
numeric but are not described as such in the NLS.CS.TYPES
file.

10 Non-Numerics A multivalued list of characters that are not considered to be
numeric but are described as such in the NLS.CS.TYPES file.

11 Printables A multivalued list of characters that are considered to be
printable but are not described as such in the NLS.CS.TYPES
file.

12 Non-Printables A multivalued list of characters that are not considered to be
printable but are described as such in the NLS.CS.TYPES file.

13 Trimmables A multivalued list of characters that are to be removed by TRIM
functions in addition to spaces and tab characters.

In Spanish, accented characters other than ñ drop their accents when converted to uppercase. In
French, all accented characters drop their accents in uppercase.

This example shows a convention called NOACCENT.UPCASE, which the locale FR-FRENCH uses, and a
convention called SPANISH, that is based on it.

Note: In this example, the only characters affected are those in general use in French and Spanish.
There are many other accented characters in Unicode. This example displays <N?> that comes
from the MNEMONICS map. This lets you easily enter non-ASCII characters rather than their
Unicode values.

Character Type Conventions for ACCENTLESS.UPPERCASE

Category name. NOACCENT.UPCASE
Description... ISO8859-1 lowercase accented chars lose
 accents in uppercase
Based on...... DEFAULT
Lowercase.............................. ->
Uppercase...........................
00E0 - LATIN SMALL LETTER A WITH GRAVE 0041 - LATIN CAPITAL LETTER A
00E1 - LATIN SMALL LETTER A WITH ACUTE 0041 - LATIN CAPITAL LETTER A
00E2 - LATIN SMALL LETTER A WITH 0041 - LATIN CAPITAL LETTER A
 CIRCUMFLEX
00E3 - LATIN SMALL LETTER A WITH TILDE 0041 - LATIN CAPITAL LETTER A
00E4 - LATIN SMALL LETTER A WITH 0041 - LATIN CAPITAL LETTER A
 DIAERESIS
00E5 - LATIN SMALL LETTER A WITH RING 0041 - LATIN CAPITAL LETTER A
 ABOVE
00E7 - LATIN SMALL LETTER C WITH 0043 - LATIN CAPITAL LETTER C
 CEDILLA
00E8 - LATIN SMALL LETTER E WITH GRAVE 0045 - LATIN CAPITAL LETTER E
00E9 - LATIN SMALL LETTER E WITH ACUTE 0045 - LATIN CAPITAL LETTER E
00EA - LATIN SMALL LETTER E WITH 0045 - LATIN CAPITAL LETTER E
 CIRCUMFLEX
00EB - LATIN SMALL LETTER E WITH 0045 - LATIN CAPITAL LETTER E
 DIAERESIS
00EC - LATIN SMALL LETTER I WITH GRAVE 0049 - LATIN CAPITAL LETTER I
00ED - LATIN SMALL LETTER I WITH ACUTE 0049 - LATIN CAPITAL LETTER I
00EE - LATIN SMALL LETTER I WITH 0049 - LATIN CAPITAL LETTER I
 CIRCUMFLEX
00EF - LATIN SMALL LETTER I WITH 0049 - LATIN CAPITAL LETTER I
 DIAERESIS
00F1 - LATIN SMALL LETTER N WITH TILDE 004E - LATIN CAPITAL LETTER N

Collate records

45

00F2 - LATIN SMALL LETTER O WITH GRAVE 004F - LATIN CAPITAL LETTER O
00F3 - LATIN SMALL LETTER O WITH ACUTE 004F - LATIN CAPITAL LETTER O
00F4 - LATIN SMALL LETTER O WITH 004F - LATIN CAPITAL LETTER O
 CIRCUMFLEX
00F5 - LATIN SMALL LETTER O WITH TILDE 004F - LATIN CAPITAL LETTER O
00F6 - LATIN SMALL LETTER O WITH 004F - LATIN CAPITAL LETTER O
 DIAERESIS
00F8 - LATIN SMALL LETTER O WITH STROKE 004F - LATIN CAPITAL LETTER O
00F9 - LATIN SMALL LETTER U WITH GRAVE 0055 - LATIN CAPITAL LETTER U
00FA - LATIN SMALL LETTER U WITH ACUTE 0055 - LATIN CAPITAL LETTER U
00FB - LATIN SMALL LETTER U WITH 0055 - LATIN CAPITAL LETTER U
 CIRCUMFLEX
00FC - LATIN SMALL LETTER U WITH 0055 - LATIN CAPITAL LETTER U
 DIAERESIS
00FD - LATIN SMALL LETTER Y WITH ACUTE 0059 - LATIN CAPITAL LETTER Y
00FF - LATIN SMALL LETTER Y WITH 0059 - LATIN CAPITAL LETTER Y
 DIAERESIS
Uppercase.............................. -> Lowercase................
Alphabetics.....
Non-Alphabetics.
Numerics........
Non-Numerics....
Printables......
Non-Printables..
Trimmables......
Character Type Conventions for SPANISH
Category name. SPANISH
Description... Language=Spanish - SMALL N WITH TILDE
 keeps tilde on uppercasing
Based on...... NOACCENT.UPCASE
Lowercase.............................. ->
Uppercase...........................
<n?> - LATIN SMALL LETTER N WITH TILDE <N?> - LATIN CAPITAL LETTER N WITH
 TILDE
Uppercase.............................. ->
Lowercase...........................
Alphabetics.....
Non-Alphabetics.
Numerics........
Non-Numerics....
Printables......
Non-Printables..
Trimmables......

Collate records

Convention records in the Collate category are stored in the NLS.LC.COLLATE file. The following
table shows each field number, its display name, and a description. Many of the fields are Boolean. An
empty field or a value of 0 or N indicates false; any other value indicates true.

Field Name Description

0 Category name The name of the convention.
1 Description A description of the convention. It usually includes the territory

to which the convention applies and the language with which it is
used.

2 Based on The name of another convention record in the
NLS.LC.COLLATE file on which this convention is based.

Chapter 4: Locales

46

Field Name Description

3 Accented sort? This field determines how accents on characters affect the
collate order. A false value indicates that accents are not collated
separately. A true value indicates that accents are used as tie
breakers in the sort. See Collating, on page 48.

4 In reverse? If field 3 indicates an accented collation, this field determines
the direction of that collation. A false value indicates forward
collation. A true value indicates reverse collation.

5 Cased sort? This field determines whether the case of a character is
considered during collation. A false value indicates that case is
not considered. A true value indicates that case is used as a tie
breaker in the collation.

6 Lowercase first? If field 5 indicates a cased collation, this field determines which
case is collated first. A false value indicates that lowercase is
collated first. A true value indicates that uppercase is collated
first.

7 Expand A multivalued field containing Unicode values of characters that
are expanded before collation. See Contractions and expansions,
on page 49.

8 Expanded A multivalued field associated with field 7 that supplies the
values to which the characters expand. Each value may be one or
more Unicode values separated by tab characters or spaces. To
override an expansion inherited from a based convention named
in field 2, enter the same multivalue in fields 7 and 8. (For another
method, see the description of field 10.)

9 Before? A multivalued field associated with fields 7 and 8 that determines
how expanded characters collate. A false value indicates that a
character is collated after expansion; a true value indicates that a
character is collated before expansion.

10 Contract A multivalued field containing a list of pairs of Unicode values
of characters after contraction. The values should be separated
by tab characters or spaces. To override an expansion inherited
from a based convention named in field 2, enter a value in
this field and a corresponding empty value in field 11. See
Contractions and expansions, on page 49.

11 Before A multivalued field associated with field 10. It gives the Unicode
value of the character that a contracted pair precedes in the
collation order.

12 Weight tables A multivalued field supplying the weight information for
characters in this locale. The values should be record IDs in the
NLS.WT.TABLES file. The default is the name of the locale. The
weight information is processed in the order supplied in this field.

This example shows the NLS.LC.COLLATE records named DEFAULT, GERMAN, and SPANISH:

▪ DEFAULT uses no expansion or contraction, but does collate in a sequence other than the Unicode
value.

▪ GERMAN uses the DEFAULT collating sequence, but introduces an expansion.

▪ SPANISH is also based on DEFAULT, but introduces eight contractions.

Collating Sequence Conventions for DEFAULT

Category name.... DEFAULT

Collate records

47

Description...... System defaults
Based on.........
Accented Sort?... N
In reverse?...... N
Cased Sort?...... N
Lowercase first?. N
Expand -------------------->..... Before? Expanded..
..........................
Contract... ----------------------->..... Before
..............................
Weight Tables... . LATIN1-DEFAULT
 . LATINX-DEFAULT
 . LATINX2-DEFAULT
 . LATINX3-DEFAULT
 . GREEK-DEFAULT
 . CYRILLIC-DEFAULT

Collating Sequence Conventions for GERMAN

Category name.... GERMAN
Description...... Language=German
Based on......... DEFAULT
Accented Sort?... Y
In reverse?...... N
Cased Sort?...... Y
Lowercase first?. N
Expand -------------------->..... Before? Expanded..
..........................
<ss> LATIN SMALL LETTER SHARP S N S S LATIN CAPITAL LETTER S
 LATIN CAPITAL LETTER S
Contract... ----------------------->..... Before
..............................
Weight Tables....

Collating Sequence Conventions for SPANISH

Category name.... SPANISH
Description...... Language=Spanish
Based on......... DEFAULT
Accented Sort?... Y
In reverse?...... N
Cased Sort?...... Y
Lowercase first?. N
Expand -------------------->..... Before? Expanded..
..........................

Contract... ----------------------->..... Before
..............................
C H LATIN CAPITAL LETTER C D LATIN CAPITAL LETTER D
 LATIN CAPITAL LETTER H
C h LATIN CAPITAL LETTER C D LATIN CAPITAL LETTER D
c h LATIN SMALL LETTER C d LATIN SMALL LETTER D
 LATIN SMALL LETTER H
c H LATIN SMALL LETTER C d LATIN SMALL LETTER D
 LATIN CAPITAL LETTER H
L L LATIN CAPITAL LETTER L M LATIN CAPITAL LETTER M
 LATIN CAPITAL LETTER L
L l LATIN CAPITAL LETTER L M LATIN CAPITAL LETTER M
 LATIN SMALL LETTER L
l l LATIN SMALL LETTER L m LATIN SMALL LETTER M

Chapter 4: Locales

48

 LATIN SMALL LETTER L
l L LATIN SMALL LETTER L m LATIN SMALL LETTER M
 LATIN CAPITAL LETTER L
Weight Tables.... LATIN-SPANISH

Collating
Collating is a complex issue for many languages. It is not sufficient to collate a character set in
numerical order of its Unicode values. Locales that share a character set often have different collating
rules. For example, these are the main issues that affect collating in Western European languages:

▪ Accented characters. Should accented characters come before or after their unaccented
equivalents? Or should accents only be examined if two strings being compared would otherwise
be identical (that is, as a tie breaker)?

▪ Expanding characters. Some languages treat certain single characters as two separate characters
for collating purposes.

▪ Contracting characters. Some languages have pairs of characters that collate as though they were
a single character.

▪ Should case be considered? Should case be used as a tie breaker for otherwise identical strings? If
so, which comes first, uppercase or lowercase?

▪ Should hyphens or other punctuation be considered as tie breakers?

How UniVerse collates

To overcome these collating problems, UniVerse allows each Unicode character to be assigned up to
three weights. The weight is a numeric value to use instead of the character during collation. The three
weights are as follows:

Weight Description

Shared weight All characters that are essentially the same have the same shared weight,
even though they may differ in accent or case.

Accent weight This weight shows the order of precedence for accented characters. The
Collate convention determines the direction of the collation.

Case weight This weight differentiates between uppercase and lowercase characters.
The Collate convention determines which case has precedence.

Before collation begins, UniVerse expands or contracts any characters as defined in the Collate
convention. The collation works as follows:

1. The characters are compared by shared weight.
2. If two characters have the same shared weight, they are compared by accent weight.
3. If the accent weight is the same, they are compared by case weight.

Example of accented collation

This table compares how four French words that differ only in their accents are collated in two
different ways, depending on how the weight tables have been configured:

Example of cased collation

49

Order Accented collation Unaccented collation

1 cote cote
2 côte coté
3 coté côte
4 côté côté

In the accented collation, the words are in the order they would be found in a French dictionary. (It
is actually a reverse accented collation.) Each accented character has the same shared weight as it
would have without the accent. The order is decided by referring to the accent weight.

In the unaccented collation, each accented character has a different shared weight unrelated to its
unaccented equivalent. The order is decided by the shared weight alone.

Example of cased collation

The three words Aaron, Aardvark, and aardvark show how case affects collation:

Order Cased collation Uncased collation

1 Aardvark Aardvark
2 aardvark Aaron
3 Aaron aardvark

In the cased collation, Aaron follows aardvark because the characters ‘A’ and ‘a’ have the same shared
weight. The case weight is only considered for the two strings that are otherwise identical, that is,
Aardvark and aardvark.

In the uncased collation, Aaron precedes aardvark because the characters ‘A’ and ‘a’ have different
shared weights.

Shared weights and blocks

Unicode is divided into blocks of related characters. For example, Cyrillic characters form one block,
while Hebrew characters form another. In most circumstances, it is unlikely that you need to collate
characters from more than one block at a time. Shared weights are assigned so that characters collate
correctly within each Unicode block.

Contractions and expansions

Some languages have pairs of characters that collate as though they were a single character. Other
languages treat certain single characters as two separate characters for collating. These contractions
and expansions are done before UniVerse begins a collation.

For example, in Spanish, the character pairs CH and LL (in any combination of case) are treated as
a single, separate character. CH comes between C and D in the collating sequence, and LL comes
between L and M. UniVerse identifies these character pairs before collation begins. In German, the
character ß is expanded to SS before collation begins.

Chapter 4: Locales

50

Editing weight tables

Collating character sets in different languages is a complex issue. Each character has an assigned
weight value used for numeric comparisons in sorting, but you can change these weight values to sort
in a different way when you want to customize your locale.

You can edit the weight table for a locale by choosing Categories > Weight Tables > Edit from the
NLS Administration menu. Any change you make to the weight assigned to a character overrides the
default weight derived from its Unicode value.

The weights are held in the NLS.WT.TABLES file, which is a type 19 file. Each record in the file can
contain:

▪ Comment lines, introduced by a # or *

▪ A set of weight values for a Unicode code point

Each weight value line has the following fields, separated by at least one ASCII space or tab character:

character [block.weight /] shared.weight accent.weight case.weight [comments]

character is a Unicode character value. This should be four hexadecimal digits, zero-filled as
necessary.

The block.weight / shared.weight value is one or two decimal integers, separated by a slash (/)
if necessary. block.weight can be 1 through 127; shared.weight 1 through 32767. If block.weight
is omitted, it is taken as the value of the Unicode block number to which character belongs.
shared.weight may be given as a hyphen, in which case it is taken as the value of the most recent
weight value line without a hyphen for shared.weight. Characters that should sort together if accents
and case are disregarded should have the same block.weight / shared.weight value.

accent.weight is a decimal integer 1 through 63. It may be given as a hyphen, in which case it is taken
as the value of the most recent weight value line without a hyphen for accent.weight. Characters that
are distinguished only by accent should have the same block.weight / shared.weight value and differ
in their accent.weight value. A list of conventional values to assign to this field can be found by listing
records starting with “AW…” in the NLS.WT.LOOKUP file.

case.weight value is a decimal integer 1 through 7, or the letter U or L to indicate uppercase and
lowercase. case.weight can be given as a hyphen, in which case it is taken as the value of the most
recent weight value line without a hyphen for case.weight. Characters that are distinguished only by
case should have the same block.weight / shared.weight value and accent.weight value and differ only
in their case.weight value. A list of conventional values to assign to this field can be found by listing
records starting with “CW…” in the NLS.WT.LOOKUP file.

comments can contain any characters.

Calculating the overall weight

The overall weight assigned to character is calculated using the following formula:

(block.weight x 224) + (shared.weight x 29) + (accent.weight x 23) + case.weight

If character is not mentioned in a table, the default weight is calculated as follows:

(BW x 224) + (SW x 29)

BW is the character’s Unicode block number. SW depends on its position within the block: the first
character has a SW of 1, the second a SW of 2, and so on.

Example of a weight table

51

Example of a weight table

This example shows a weight table for collating Turkish characters:

* Sorting weight table for TURKISH characters (from ISO8859/9)
* in order on top of LATIN1/LATINX tables. These characters are:
*
* Between G and H: G BREVE
* Between H and J: I WITH DOT ABOVE (uppercase version of SMALL I
0069)
* DOTLESS I (lowercase version of CAPITAL I 0049)
* (Note: the sequence is H, dotless I, I dot + accented versions,
J, ...)
* Between S and T: S CEDILLA
*
* SYNTAX:
* Each non-comment line gives one or more weights for a
character,as * follows (character value in hex, weights in
decimal):
* Field 1 = Unicode character value
* Field 2 = Shared weight (characters that sort together if
* accents and case were to be disregarded should
* have the same SW)
* Or, Block Weight/Shared Weight. This form allows
* characters in different Unicode blocks to have
* equal SWs. If BW is omitted, only SWs for characters
in * the same block are equal.
* Field 3 = Accent weight, or '-' to omit or copy from previous.
* Please use values as defined in the file NLS.WT.LOOKUP.
* Field 4 = Case weight, or 'U' for upper and 'L' for lower case
chars.
*
 **
* HEX (BW/)SW AW CW
* After G:
011E 4/1092 5 U * G WITH BREVE
011F - 5 L
* I, dotted and undotted:
* (Note we do not use AWs here, but use SWs to differentiate
* these characters from the unaccented versions.)
0049 4/1109 - U * I
0131 - - L * DOTLESS I
0130 4/1110 - U * I WITH DOT ABOVE
0069 - - L * I
* S cedilla
015E 4/1232 40 U * S WITH CEDILLA
015F - 40 L
*
* END

Using locales
From within a UniVerse BASIC program you can do the following:

▪ Retrieve the current locale name of a specified category

▪ Save the current locale settings

▪ Restore the saved locale settings

Chapter 4: Locales

52

▪ List the current locale settings

▪ Change the current locale settings

For information about using functions to do these tasks from within BASIC programs, see NLS in
UniVerse BASIC programs, on page 54.

Retrieving locale settings

You can retrieve locale settings in two ways:

▪ From the UniVerse prompt using the GET.LOCALE command

▪ From a UniVerse BASIC program using the GETLOCALE or LOCALEINFO functions (see NLS in
UniVerse BASIC programs, on page 54).

GET.LOCALE displays the locale names set in each category, and details of any saved locale,
if it differs from the current one. If locales are not enabled on the system, or if NLS mode is off,
GET.LOCALE returns an error.

Saving and restoring locales

You can save and restore locales in two ways:

▪ From the UniVerse prompt using the SAVE.LOCALE and RESTORE.LOCALE commands.

▪ From a UniVerse BASIC program using the SETLOCALE function. This is described in detail in
Changing the current locale, on page 68.

A locale is always set up and saved when you enter UniVerse. You can restore this initial locale using
RESTORE.LOCALE if you have not issued a SAVE.LOCALE command during your UniVerse session.
SAVE.LOCALE and RESTORE.LOCALE return errors if they are issued when locales are turned off,
that is, if either the NLSLCMODE or NLSMODE configurable parameters in the uvconfig file is set to
0.

Listing current locales

You can list the current locales from the UniVerse prompt using the LIST.LOCALES command. The
LIST.LOCALES command uses an existing active select list; otherwise, it lists all installed locales.

Changing current locales

You can change or disable locale settings in two ways:

▪ From the UniVerse prompt using the SET.LOCALE command

▪ From a UniVerse BASIC program using the SETLOCALE function (see NLS in UniVerse BASIC
programs, on page 54).

You can disable a locale or set a new locale from the UniVerse prompt using the
SET.LOCALE command. SET.LOCALE returns an error if locales are not enabled, that is, if either the
NLSLCMODE or the NLSMODE configurable parameter is set to 0.

Changing current locales

53

Note: When you want to specify numeric and monetary formatting for a locale, you must set both
the Numeric and Monetary categories to something other than OFF, for example, DEFAULT. If not,
UniVerse treats BASIC conversions, such as MD, ML, and MR, as if locales are turned off.

Note: If you enable NLS but do not set NLSLocale, UniVerse displays dictionary items with date-
type conversion codes in the YYMMDD format, regardless of other uvconfig parameter settings.

54

Chapter 5: NLS in UniVerse BASIC programs
This chapter describes how UniVerse BASIC programs use NLS. The topics covered include:

▪ How UniVerse BASIC is affected by NLS.

▪ Display length in UniVerse BASIC. This describes how to accommodate the difference between a
character’s display length and its string length.

▪ Maps in UniVerse BASIC. This covers how maps are used by files and devices, how to set and modify
maps, and how UniVerse BASIC handles unmappable characters.

▪ Multinational characters in UniVerse BASIC. This describes how you can include multinational
characters in source code, specify them for printing, or edit them using ED.

▪ Using locales in UniVerse BASIC. This topic describes how to set or query a locale from within a
program.

How UniVerse BASIC is affected
UniVerse BASIC is aware of multinational characters and locales. Usually this is transparent to the
programmer and no special code is needed. There is usually no need to recompile existing programs
for NLS. If you write programs that use NLS features such as locales, you should compile the programs
with UniVerse in NLS mode. Any program that uses NLS features should be run with UniVerse in NLS
mode, otherwise you may see run-time errors.

UniVerse BASIC is fundamentally unchanged by NLS, except for some new or modified UniVerse BASIC
statements and functions. UniVerse BASIC statement and variable names must be in ASCII with the
exception of comments and literal strings. For more information about when you can use ASCII and
non-ASCII characters, see Multinational characters in UniVerse BASIC, on page 61.

Using the UVNLS.H Include file

You can use the SYSTEM function to test whether NLS mode is on when a program runs, and to extract
information about NLS settings. The following system function values are read-only. Their tokens are
in the include file UVNLS.H.

Value Token Return value

100 NLS$ON 1 if NLS is installed and NLSMODE is on, otherwise 0. Use this
value to check if NLS maps are enabled.

101 NLS$LOCALES The value of the NLSLCMODE parameter, otherwise 0. Use this
value to check if NLS locales are enabled.

102 NLS$MESSAGES Reserved for future enhancements. Always returns 0.
103 NLS$TERMMAP The terminal map name assigned to the current terminal print

channel, otherwise 0.
104 NLS$AUXMAP The auxiliary printer map name assigned to the current terminal

print channel, otherwise 0.
105 NLS$CONFIG A dynamic array with field marks separating the elements,

containing the current values of the uvconfig file parameters
for NLS maps, otherwise 0. Starting at 11.3.1, the value of
NLSDEFSOCKMAP is reported in attribute 18 of the result.

String length

55

Value Token Return value

106 NLS$SEQMAP The current name of the map used for sequential I/O, otherwise
0. This is the value for the NLSDEFSEQMAP parameter unless it
is overridden by a SET.SEQ.MAP command.

107 NLS$GCIMAP The name of the current GCI map.

The UVNLS.H include file also gives the internal character set values of the UniVerse system
delimiters.

Here is a program example that examines the current NLS settings:

$INCLUDE UNIVERSE.INCLUDE UVNLS.H
IF SYSTEM(NLS$ON)
THEN PRINT "Terminal map set to: ":SYSTEM(NLS$TERMMAP)
ELSE PRINT "NLS is not enabled"

String length

UniVerse BASIC uses characters rather than bytes to determine string length. Statements and
functions such as LEN, MATCH, INDEX, FIELD, TRIM, REPLACE, READ, WRITE, PRINT, and so on,
work in the same way for multibyte and single-byte character sets.

Statements and functions that operate on dynamic arrays, for example, EXTRACT, REMOVE, INSERT,
DELETE, and so on, work equally well with NLS turned on or off. This is because they look for UniVerse
system delimiters in string variables, which have the same value whether NLS is on or off.

Length of record IDs

Record IDs in UniVerse files must not exceed 255 bytes. This means that the maximum number of
characters in a record ID depends on the character set in use. For multibyte character sets, the safe
limit is 85 characters. This allows each character to be three bytes long in the internal character set.

This limit also applies to values used as keys in secondary indexes. If a secondary index is too long, a
WRITE statement fails, a message is issued, and a nonzero value is returned to the STATUS function.

Display length in BASIC
UniVerse BASIC uses character maps to find the correct display length for a character. Several
UniVerse BASIC statements and functions can operate on the display length rather than the character
length.

▪ The LENDP function and LENSDP function distinguish display length from character length.

▪ The HEADING statement and the FOOTING statement allow for varying display positions in gaps.

▪ The FMTDP function, FMTSDP function, and the FOLDDP function work like the FMT function,
FMTS function, and the FOLD function, but use display positions rather than character lengths.

▪ The SETPTR statement allows you to associate a map with a print channel. This means you can
determine display widths for formatting spooled output. (Note that the internal to external
mapping does not take place until a report is printed.)

▪ The INPUTDP statement works like the INPUT statement, but allows you to define input displays to
work in terms of variable display positions.

Chapter 5: NLS in UniVerse BASIC programs

56

The display length of the unknown character is assumed to be 1.

For the syntax and full details about these statements and functions, see UniVerse BASIC.

Finding the display length of a string

Use the LENDP function and the LENSDP function to return the display length of a string. These
functions are similar to the LEN function and the LENS function, respectively. If these functions are
executed with NLS turned off, the program behaves as if the equivalent LEN or LENS function had
been called.

Formatting a string in display positions

Use the FMTDP function and the FMTSDP function to format a string in display positions rather than
character lengths. If these functions are executed when NLS is not enabled, the program behaves as if
the FMT function or the FMTS function had been called.

Folding strings using display positions

Use the FOLDDP function to fold a string using the display position length rather than its length in
characters. If FOLDDP is executed when NLS is not enabled, the program behaves as if the FOLD
function had been called.

Inputting using display length with INPUTDP

The INPUTDP statement is equivalent to the INPUT statement, but it works on character display
lengths.

Inputting through a mask with INPUT @

Display positions affect how masks work with an INPUT @ statement. If the external character set
is multibyte, the initial value is displayed through the mask as far as possible. If you enter a new
value, the mask disappears, and the user inputs to a field of the appropriate length not including any
inserted characters.

The only editing functions supported are backspace and kill. When the user finishes inputting, the new
value is redisplayed through the mask just as the original value was.

Block size always in bytes

With the READBLK statement and the WRITEBLK statement, you must specify the block size in bytes,
not characters. This is because these statements are normally used to read binary data in blocks.
However, the data read is mapped using the appropriate file map, so the strings that are read can be
processed in the internal character set using any BASIC functions.

Similarly, you must be careful about block sizes for tapes written in a multibyte external character
set. Data is written in blocks of bytes, and if you specify an odd number, you may get a character split
across a block boundary. In particular, the READT statement may return a status value indicating that

The REMOVE pointer and multibyte character sets

57

an unmappable character was read, and the WRITET statement will truncate a string, possibly writing
an incomplete character.

The REMOVE pointer and multibyte character sets

When you use the SETREM statement to set the REMOVE pointer of a dynamic array, the position
you specify for the REMOVE pointer must be calculated in bytes, not characters. You should not call
SETREM and give it a random integer, since it may not point to the start of a character in the internal
character set. You should use only a value returned by GETREM, which is guaranteed to be correct.

Maps in UniVerse BASIC
UniVerse BASIC statements that perform input or output always map external data to the UniVerse
internal character set using the appropriate map for the device or file. In addition to the statements
previously discussed, the following statements also use maps for input and output:

Device Statements

Terminals CRT, INPUT, INPUTIF, PRINT, and TPRINT
Printers PRINT with PRINTER ON
Files MATREAD, MATREADL, MATREADU, MATWRITE, MATWRITEU, READ, READL,

READT, READU, READV, READVL, READVU, READSEQ, WRITESEQ, WRITE,
WRITET, WRITEU, WRITEV, and WRITEVU

Tapes READT and WRITET
Sequential files, etc. OPENDEV, OPENSEQ, READSEQ, and WRITESEQ

Determining a file’s map name

In NLS mode, each UniVerse file has an associated map that defines the external character set for the
file. If your program opens and reads a file, you may need to know the name of the map associated
with the file to ensure that the file map is the one that your program expects. There are two main ways
you can use to determine the map name:

▪ Calling the FILEINFO function

▪ Executing a GET.FILE.MAP command

The ANALYZE.FILE and FILE.STAT commands also include the map name for the file in their
reports.

FILEINFO function

To use the FILEINFO function to determine a file’s map name, use the FINFO$NLSMAP value. A token
is defined in the FILEINFO.H include file as follows:

Value Token Returns...

20 FINFO$NLSMAP The file map name if NLS is enabled, or an empty
string. If the file’s map is a default specified in the
uvconfig file, the returned string is the map
name followed by the name of the configurable
parameter in parentheses.

Chapter 5: NLS in UniVerse BASIC programs

58

The following example returns the map currently used by the VOC file.

$INCLUDE UNIVERSE.INCLUDE FILEINFO.H
OPEN "VOC" TO filevar
ELSE STOP "Cannot open the VOC file"
mapname = FILEINFO(filevar, FINFO$NLSMAP)
PRINT "Map in use for the VOC is: ":FIELD(mapname, '(', 1)

Maps for source files

If you use embedded literal strings containing non-ASCII characters, you must specify a map for the
source code in one of the following ways:

▪ Ensure that the source file has a map defined for it. If the file itself has no explicit map, you can
specify the default map to use in the NLSDEFDIRMAP configurable parameter in the uvconfig
file.

▪ Specify the $MAP map name compiler directive. The map must be installed in UniVerse, or the
compiler produces an error. Only one $MAP directive line is allowed during the compilation;
multiple lines cause a compilation error. For more information, see UniVerse BASIC.

Note: Programs containing non-ASCII characters that were compiled in NLS mode cannot be
run with NLS mode off. Programs that contain ASCII characters can always be run, whether NLS
mode is on or off.

Maps and devices
This section gives more information about how maps are used by devices.

For information about configuring devices, see Associating maps with devices, on page 17.

Maps for auxiliary devices

If there is an auxiliary device associated with a terminal, a program can send data to the device in the
correct character set. It does this by using an auxiliary map defined through the AUXMAP statement.
This avoids having to hard code the map name.

@ Function codes for terminal and auxiliary maps

There are two terminfo records that you can use to set maps for terminals and auxiliary printers as
follows:

Integer Equate name Description

–80 IT$NLSMAP Main terminal map name
–81 IT$NLSAUXMAP Auxiliary printer map name

If these map entries are not set in the terminfo file, the default specified in the NLSDEFTERMMAP
parameter of the uvconfig file is used. If the terminfo record specifies maps that are not installed,
the defaults are used and you may see a warning.

Printing previously mapped data with UPRINT

59

Warning: The maps named in terminfo may not be the current terminal map. For example, the
value can be overridden by a SET.TERM.TYPE command. Do not use the TERMINFO function
or the @ function to read the terminfo values. Use the !GETPU subroutine, the GET.TERM.TYPE
command, or the SYSTEM function instead.

Printing previously mapped data with UPRINT

You can use the UPRINT statement to print data that has already been mapped to an external format
using OCONV NLSmapname.

See NLS conversion code, on page 64. The data is not mapped again by the printer’s map. If NLS is
not enabled, UPRINT behaves like PRINT.

Finding the map associated with a print channel

You can use the !GETPU subroutine to determine the map name associated with a print channel using
the following token, which is defined in the GETPU.H include file:

Value Token Returns...

22 PU$NLSMAP The print channel’s map name if NLS is enabled,
or an empty string.

If this token is used to call !GETPU when NLS is disabled, the following run-time warning message is
issued:

Program "!GETPU": pc = nnnn, Unsupported option "PU$NLSMAP".
Ignored.

This code example finds the name of the map associated with print channel 0:

$INCLUDE UNIVERSE.INCLUDE GETPU.H
CALL !GETPU(PU$NLSMAP, 0, mapname, code)
PRINT "Map in use for print unit 0 is: ":mapname

Maps for UNIX pipes

You can assign maps to UNIX pipes opened with the OPENDEV statement or the OPENSEQ statement.
OPENDEV assigns maps to devices and OPENSEQ assigns maps to sequential files and pipes.

OPENDEV uses the map name in the entry in the &DEVICE& file to open a UNIX device. The
NLSDEFDEVMAP parameter contains the default map name. Use the ASSIGN command to override
the NLSDEFDEVMAP parameter.

OPENSEQ filename, record.id uses the map assigned to the type 1 or type 19 file in the
.uvnlsmap file. If there is no map name, the map name in the NLSDEFDIRMAP parameter is the
default. Use the SET.FILE.MAP command to override the NLSDEFDIRMAP parameter.

OPENSEQ pathname opens a UNIX pipe, file, or special device directly. OPENSEQ uses the map name
in the directory containing pathname. If there is no map name, the map name in the NLSDEFSEQMAP
parameter is the default. Use the SET.SEQ.MAP command to override the NLSDEFSEQMAP.

Chapter 5: NLS in UniVerse BASIC programs

60

The SET.SEQ.MAP command specifies the map to use with BASIC sequential I/O statements if you
cannot find an explicit map in the sequential file that you opened. For details about SET.SEQ.MAP, see
the UniVerse User Reference.

Unmappable characters
A character that cannot be mapped using the current map is called an unmappable character. If
UniVerse encounters unmappable characters during a read or write, its behavior is determined by two
factors:

▪ The setting of the NLSREADELSE and NLSWRITEELSE parameters in the uvconfig file

▪ Whether there is an ON ERROR clause

The STATUS function returns values to indicate the treatment of the unmappable characters, as
described in the next sections.

Unmappable characters and WRITE statements

If UniVerse encounters unmappable characters while executing WRITE statements, that is, WRITE,
WRITEU, WRITEV, WRITEVU, and MATWRITE, the STATUS function returns certain values. The values
returned and the behavior of UniVerse depend on the existence of an ON ERROR clause and the setting
of the NLSWRITEELSE parameter.

The STATUS function returns certain values when an ON ERROR clause is present and the
NLSWRITEELSE parameter is set to 1. The write fails and no records are written.

▪ If the unmappable character is in the record ID, the STATUS function returns 3.

▪ If the unmappable character is in the record’s data, the STATUS function returns 4.

The behavior of UniVerse is different when there is no ON ERROR clause and the NLSWRITEELSE
parameter is set to 1. The following occurs:

▪ If the unmappable character is in the record ID, the program aborts with a message in this format:

Program "name": Line nnn,
Record Id ? contains characters which are not defined in the
file's NLS map.

▪ If the unmappable character is in the record’s data, the program aborts with a message in this
format:

Program "name": Line nnn,
Record record.id contains characters which are not defined in the
file's NLS map.

The behavior of UniVerse also varies when there is no ON ERROR clause and the NLSWRITEELSE
parameter is set to 0. The following occurs:

▪ If the unmappable character is in the record ID, the program aborts with a message in this format:

Program "name": Line nnn,
Record Id ? contains characters which are not defined in the
file's NLS map.

Regardless of the existence of an ON ERROR clause, if NLSWRITEELSE is set to 0 and the unmappable
character is in the record’s data, UniVerse writes the record using the map’s unknown character to

Unmappable characters and READ statements

61

replace the unmappable characters. The unknown character is usually a question mark (?). Data is lost
as a result.

Note: There is no relationship between the NLSWRITEELSE parameter and the ELSE clause of a
UniVerse BASIC statement.

Unmappable characters and READ statements

If UniVerse encounters unmappable characters during READ statements, that is, READ, READU, READV,
READVU, and MATREAD, the STATUS function returns certain values. The values returned and the
behavior of UniVerse depend on the existence of the setting of the NLSREADELSE parameter.

The STATUS function returns certain values when the NLSREADELSE parameter is set to 1. Depending
on the origin of the unmappable characters, the following occurs:

▪ If the unmappable character is in the record ID, the program takes the ELSE clause and the
STATUS function returns 3 with a message in this format:

Program "name": Line nnn,
Record Id ? contains characters which are not defined in the
file's NLS map.

▪ If the unmappable character is in the record’s data, the program takes the ELSE clause and the
STATUS function returns 4. You also see a message in this format:

Program "name": Line nnn,
Record record.id contains characters which are not defined in the
file's NLS map.

The behavior of UniVerse differs when the NLSREADELSE parameter is set to 0. Depending on the
origin of the unmappable characters, the following occurs:

▪ If the unmappable character is in the record ID, the program takes the ELSE clause and the
STATUS function returns 3.

Note: This is different from the case when a record does not exist, where STATUS returns 0.

▪ If the unmappable character is in the record’s data, the record is read, and the unmappable
characters are replaced with the Unicode replacement character (value xFFFD). No message is
displayed, and data is lost.

ASCII and EBCDIC conversions

The ASCII and EBCDIC functions convert between 7-bit ASCII values and 8-bit EBCDIC values. The
functions work the same way whether NLS mode is on or off. This may result in ambiguous data that is
not recognized by your current mapping, for example, terminal maps, file maps, and so forth.

Multinational characters in UniVerse BASIC
All UniVerse BASIC language elements in source code, such as paths, variable names, tokens,
subroutine names, and reserved words, must be in 7-bit US ASCII. You can use other character sets in
your source code for the following:

Chapter 5: NLS in UniVerse BASIC programs

62

▪ Embedded literal strings. In this case there must be a map associated with the source file. For more
information about maps, see Maps, on page 25.

▪ Comments.

You can specify any Unicode value using the UNICHAR function. See CHAR and SEQ in NLS mode, on
page 64. You can specify certain 8-bit characters in your source by using CHAR (nnn), where nnn is a
decimal value 129 through 247.

Note: If your program source uses a CHAR (nnn) function, it must be recompiled for use in NLS
mode.

Editing multinational characters

You can use ED to edit multinational characters in records and source code. With NLS mode enabled,
ED offers a further up-arrow mode to deal with the full internal character set. Up-arrow mode can be in
three states:

▪ Disabled

▪ Enabled

▪ Enabled+Unicode

The command ^ toggles between enabled or disabled. With NLS enabled, the command ^X switches to
Unicode mode (enabled+Unicode).

In disabled mode, all characters are printed directly; whether you see them or not depends on your
terminal and terminal map.

In enabled mode, code points less than 248, and system delimiters (code points 248 through 255),
print using the decimal notation ^ddd. Every other code point uses the hexadecimal notation ^xhhhh,
which can be entered in Unicode mode.

In enabled+Unicode mode, code points 128 (character string used to represent the null value) and
248 through 255 print in decimal notation ^ddd; all other code points greater than 126 use the
hexadecimal notation ^xhhhh.

The special cases of ^094, ^128, and ^248–^255 appear in decimal in both of the enabled modes.

Note the distinction between, for example, the character printed as ^253 and that printed as ^x00FC.
The first is a UniVerse value mark, the second is the lowercase y acute character.

The following tables compare the differences between inputting and displaying characters in
hexadecimal and decimal notation in the two up-arrow modes:

Mode Printed Input in ^ddd Input in ^xhhh

enabled 000–126 127–255 0x0100–0xFFFF
enabled+Unicode 000–126 128, 248–255 0x007F, 0x0081–0xFFFF

Special characters
(Unicode format)

Input format (enabled) Input format (enabled + Unicode)

CIRCUMFLEX
ACCENT

^094 ^094

The null value ^128 ^128
C1 control character
(PAD)

 ^x0080

Generating characters in external format

63

Special characters
(Unicode format)

Input format (enabled) Input format (enabled + Unicode)

UniVerse reserved
mark

^248 ^248

UniVerse reserved
mark

^249 ^249

UniVerse reserved
mark

^250 ^250

UniVerse text mark ^251 ^251
UniVerse subvalue
mark

^252 ^252

UniVerse value mark ^253 ^253
UniVerse field mark ^254 ^254
UniVerse item mark ^255 ^255
LATIN SMALL LETTER
O WITH STROKE

^x00F8 ^x00F8 (ø)

LATIN SMALL LETTER
U WITH GRAVE

^x00F9 ^x00F9 (ù)

LATIN SMALL LETTER
U WITH ACUTE

^x00FA ^x00FA (ú)

LATIN SMALL LETTER
U WITH CIRCUMFLEX

^x00FB ^x00FB (û)

LATIN SMALL LETTER
U WITH DIAERESIS

^x00FC ^x00FC (ü)

LATIN SMALL LETTER
Y WITH ACUTE

^x00FD ^x00FD

LATIN SMALL LETTER
THORN

^x00FE ^x00FE

LATIN SMALL LETTER
Y WITH DIAERESIS

^x00FF ^x00FF (ÿ)

Inputting Unicode characters

To enter a character by its Unicode value, you can type either ^ddd or ^xhhhh, where hhhh must be a 4-
digit hexadecimal number. You can use ^ddd only for values 0 through 255.

You can input system delimiters only by using the decimal notation ^ddd.

Generating characters in external format

You can use the UNICHAR function to generate a single character from a supplied Unicode value, or
you can use the UNICHARS function to generate a dynamic array of characters. The UNICHAR and
UNICHARS functions operate in the same way whether NLS mode is on or off.

Generating system delimiters and the null value

Do not use UNICHAR or UNICHARS to generate UniVerse system delimiters or the internal
representation of the null value. Use the BASIC @variables instead: @TM, @SVM, @SM, @VM, @FM,
@AM, @IM, and @NULL.STR.

Chapter 5: NLS in UniVerse BASIC programs

64

Generating characters in internal format

You can generate a Unicode value from a supplied character using the UNISEQ function, or you can
generate a dynamic array of Unicode values using the UNISEQS function. These functions perform the
opposite action of the UNICHAR and UNICHARS functions.

CHAR and SEQ in NLS mode

Use the CHAR and SEQ functions with care in NLS mode.

Use CHAR (nnn) to operate modulo 256. If nnn is in the range 0 through 127, 128, and 248 through
255, it operates in the same way whether NLS mode is on or off. If nnn is in the range 129 through
247, it produces Unicode characters in the range x0081 through x00F7. These correspond to the ISO
8859-1 (Latin 1) characters with those values, and are multibyte characters. If you want to generate
the specific bytes with those values, use the BYTE function. To generate characters outside the CHAR
range, use UNICHAR. For more information, see UniVerse BASIC.

Use SEQ (var) to return a number in the range 0 through 255, but you cannot use this function to
look at the Unicode values in the range x0080, and x00F8 through x00FF, or above. To examine those
values, use UNISEQ. If you call SEQ on a character outside its range, a run-time message is printed, and
an empty string is returned.

Internal and external string conversion

You can use the ICONV and OCONV functions to do the following:

▪ Convert an internal Unicode string to its external representation and vice versa, using the NLS
conversion code

▪ View internal strings in their Unicode hexadecimal format using the MU0C conversion code

NLS conversion code

Use the following syntax for ICONV and OCONV with the NLS conversion code:

ICONV (string, "NLSmapname")

OCONV (string, "NLSmapname")

ICONV treats string as being in the external format defined by mapname, converts it to internal
format, and returns the result. Use OCONV to convert string from internal format to the external format
specified by mapname.

mapname must be either the name of an installed map or one of the special strings LPTR, CRT, AUX, or
OS. These denote the map associated with the current printer, terminal, auxiliary printer, or operating
system respectively. With ICONV, if mapname is the value UNICODE, each two bytes in string is
assumed to be a Unicode character. If there is an odd number of bytes in string, Universe substitutes
the last byte with the Unicode replacement character (xFFFD) and the STATUS function returns 3. If
mapname is not installed, an empty string is returned.

The conversion works only with NLS mode on. The STATUS function can return the following values:

Value Description

0 The conversion succeeds.
1 The map name supplied is invalid, an empty string is returned.
2 The conversion is invalid or NLS is not enabled.

MU0C conversion code

65

Value Description

3 Some characters of the converted string could not be mapped, and the
returned string contains replacement characters.

Use UPRINT instead of PRINT (which treats string as being in internal format) to print the external
format string returned by OCONV NLSmapname.

For example:

UPRINT OCONV(VAR, "NLSSHIFT-JIS")

For more information, see UniVerse BASIC.

MU0C conversion code

Use the MU0C conversion code to view internal strings in Unicode hexadecimal format.

Note: The MU0C conversion code uses four hexadecimal digits. The MX0C conversion code treats
strings as two hexadecimal digits per byte, and does not know about internal Unicode format.

Use the following syntax:

ICONV (string, "MU0C")

OCONV (string, "MU0C")

If you use the conversion code with the UniVerse system delimiters, note that OCONV(@FM, "MU0C")
returns xF8FE, and ICONV("F8FE", "MU0C") produces @FM, that is, the single character CHAR(254) in
internal format. This is so you can distinguish UNICHAR(254) from CHAR(254). OCONV(UNICHAR(254),
"MU0C") returns x00FE.

The value of the BASIC STATUS function after an MU0C conversion has been executed is as follows:

Value Description

0 The conversion succeeds.
2 The conversion is invalid or NLS is not enabled.

The following example shows internal to external byte sequences for several characters:

X = UNICHAR(222):UNICHAR(240):@FM
PRINT "Internal form in hex bytes is: ":OCONV(X, 'MX0C')
Y = OCONV(X, 'NLSISO8859-1')
PRINT "External form in hex bytes is: ":OCONV(Y, 'MX0C')
PRINT "Internal form in Unicode is: ":OCONV(X, 'MU0C')

This program produces the following output:

Internal form in hex bytes is: C39E C3B0 FE
External form in hex bytes is: DE F0 3F
Internal form in Unicode is: 00DE 00F0 F8FE

The characters in the output are separated by spaces in order to display the differences more easily.
For example, C39E represents 222 in the internal form in UniVerse, DE represents 222 in the external
byte sequence as it is displayed on the terminal, and 00DE represents 222 in the Unicode byte
sequence.

Chapter 5: NLS in UniVerse BASIC programs

66

Likewise, C3B0 represents 240 in the internal form in UniVerse, F0 represents 240 in the external byte
sequence for the terminal, and 00F0 represents 240 in the Unicode byte sequence.

In the final column, FE is the internal representation of @FM, 3F (the Unicode character ?) represents
the external byte sequence for the terminal, and F8FE represents the Unicode byte sequence.

Other conversion codes

You can use other conversion codes with ICONV and OCONV, such as MM (monetary conversion), NL
(Arabic numeral conversion), MCM, MC/M, and MCW (additional masked character conversions). For
more information about these conversion codes, see UniVerse BASIC.

Displaying records by character value

You can check the contents of a record even if your terminal cannot display the character set that the
record uses.

Warning: Be careful to distinguish the differences in how characters are represented on your
terminal. A system delimiter, for example @VM, is displayed as FC in the HEX case, but F8FC in
the UNICODE case, not 00FC. F8FC is the external representation of the UniVerse value mark in
Unicode. The value remains unchanged.

The COPY, CP, and CT commands have a HEX option to display the contents of a record in
hexadecimal digits, and a UNICODE option to display the Unicode values of the characters. For the
Pick version of the COPY verb, you specify (U instead of UNICODE, and (H instead of HEX.

For example, if a record contains the string ABC in field 1 and ÄßÇ in field 2, using the HEX option, you
see the following with NLS mode off. In field 1 the 41 is the ASCII code for A, and C4 is the (single byte)
ASCII code for Ä.

>COPY FROM VOC 'EXAMPLE' CRT HEX

 EXAMPLE
 0001 414243
 0002 C4DFC7

You see the following with NLS mode on:

>COPY FROM VOC'EXAMPLE' CRT HEX
 EXAMPLE
 0001 414243
 0002 C384C39FC387

ABC uses one byte per character in internal format (line 0001) whereas ÄßÇ uses two bytes per
character (line 0002). Field 1 contains 41, the (single byte) internal code for A, and field 2 contains
C384, the (double byte) internal code for Ä.

Using the UNICODE option you see the following:

>COPY FROM VOC'EXAMPLE' CRT UNICODE
 EXAMPLE
 0001 004100420043
 0002 00C400DF00C7

Exchanging character values

67

Line 0001 is zero-extended, but similar to the previous example, whereas line 0002 is completely
different. 0041 is the UNICODE representation for A, and 00C4 is the UNICODE for Ä.

Exchanging character values

The UniVerse BASIC EXCHANGE function is not NLS-aware and may not produce the results you
expect when NLS is enabled. This function has two arguments: the first is the hexadecimal value
of a character to be found, and the second is a hexadecimal value of a character to replace it with.
EXCHANGE looks at only the first two bytes of its arguments and so can handle only characters 00
through FF. In NLS mode, bytes 00 through FA are treated as Unicode characters 0000 through 00FA,
and bytes FB through FE are treated as system delimiters. If FF is used as the second argument, all
occurrences of the character designated by the first argument are deleted.

Case inversion and deadkey characters

Deadkey characters are generated by a sequence of keystrokes rather than a single, dedicated key.
Deadkey characters are always generated after any case inversion commands are processed. This
means that a command such as PTERM CASE INVERT has no effect on characters entered through
deadkey sequences.

For example, using the MNEMONICS map, if case inversion is on (the default), entering the sequence
< a- > produces the character LATIN SMALL LETTER A WITH MACRON (not < A- >, the character LATIN
CAPITAL LETTER A WITH MACRON.

BASIC and locales
A locale comprises the set of conventions in the five categories (time, numeric, monetary, ctype, and
collate).

Note: Starting at 11.3.1, numerics in BASIC code must always follow the non-NLS standards.
Numerics are not affected by the current locale.

Strings are interpreted according to the locale in use at compilation time.

To avoid unexpected results, the locale at compile time must match the locale at runtime.

From within a UniVerse BASIC program, you can do the following:

▪ Retrieve the current locale names in any category

▪ Save and restore the current locale setting

▪ Change the current locale setting

For information about setting locales system-wide, see Locales, on page 33.

Retrieving locale settings

You can retrieve locale settings using the GETLOCALE function and the LOCALEINFO function.
GETLOCALE retrieves the names of specified categories of the current locale. LOCALEINFO retrieves
the settings of the current locale.

Chapter 5: NLS in UniVerse BASIC programs

68

Saving and restoring locales

You can save and restore locales using the SETLOCALE function with the UVLC$SAVE and UVLC
$RESTORE tokens.

Changing the current locale

You can change or disable a locale setting using the SETLOCALE function.

69

Chapter 6: NLS in client programs
This chapter describes how client programs and external subroutines use NLS. The topics covered
include:

▪ Points to watch when you write client programs

▪ How to access NLS functionality from the following APIs:
▪ GCI (General Calling Interface)

▪ BCI (UniVerse BASIC SQL Client Interface)

▪ UniVerse ODBC

▪ UCI

▪ InterCall

▪ UniObjects

▪ UniObjects for Java

▪ UniObjects for .NET

These APIs (except for GCI) access client/server technology.

Client programs
This section contains some general information about using NLS features from client programs. A
server process is a UniVerse instance that processes requests from a client process and produces
results. A server platform refers to the computer on which the server processes run.

The most important point to remember is that you cannot access any NLS functionality unless NLS
mode is enabled on the server. All servers honor the settings of the UniVerse configurable parameters
and client requests for character mapping and locales.

For all client/server programs, the UniRPC must be running on the server platform.

You need to be aware of the following relevant configurable parameters:

Parameter Description

NLSMODE Enables NLS.
NLSDEFSRVMAP Name of the default map to be used when passing string arguments to or

from client. This is used if the client does not specify a map.
NLSLCMODE Enables locale mode if NLS is enabled.
NLSDEFSRVLC Name of the default locale to be used when communicating with client. This

is used if the client does not specify a locale.

Maps

Except for BCI clients, UniVerse performs character mapping on the server. Your program can inform
the server of the appropriate map name or the character set you use to send and receive data. In
theory, you can set and reset maps as many times as you want in a program. All users who log on to a
client/server system have their own individual copies of the server program.

Since BCI client programs run as part of UniVerse, the client performs its own character mapping.

Chapter 6: NLS in client programs

70

Locales

UniVerse does locale conversions on the server. Your program must inform the server of the locale
your programs want to use in order to send or receive data. Once a connection to the server is
established, you can change the locale settings as you wish. These settings do not interfere with other
client/server users.

System delimiters and the null value

Your program must use the correct values for system delimiters and the null value. You should not use
hard-coded values for system delimiters. Always interrogate a UniVerse variable (for example, @VM),
or use the equivalent functionality in your API, for example, the VM property of the Session object in
UniObjects, or SQLGetInfo for UCI.

UniObjects
UniObjects provides two objects that use NLS. The NLSMap and NLSLocale objects are accessed
through the Session object, which has several properties associated with NLS. If NLS mode is
not enabled on the server, these objects are not available and return an empty string. For more
information, see the UniObjects Developer’s Guide.

NLSLocale object

Use the NLSLocale object to define and manage the locale setting for the Time, Numeric,
Monetary, Ctype, and Collate categories. You can supply the values for these categories as a single
DynamicArray object, with five elements. This object has no default property.

Note: If you enable NLS but do not set NLSLocale, UniVerse displays dictionary items with date-
type conversion codes in the YYMMDD format, regardless of other uvconfig parameter settings.

UniObjects for Java and UniObjects for .NET
UniObjects for Java and UniObjects for .NET provide two objects that use NLS. The UniNLSMap and
UniNLSLocale objects are accessed through the UniSession object, which has several methods
associated with NLS. If NLS mode is not enabled on the server, these objects are not available and
throw an exception. For more information, see the UniObjects for Java Developer’s Guide or the
UniObjects for .NET Developer’s Guide.

UniNLSMap object

The UniNLSMap object defines the map to be used on the server for the UniObjects for Java session.

UniNLSLocale object

71

UniNLSLocale object

Use the UniNLSLocale object to define and manage the locale setting for the Time, Numeric,
Monetary, Ctype, and Collate categories. You can supply the values for these categories as a single
UniDynArray object with five elements. This object has no default method.

InterCall functions
The following InterCall functions use NLS functionality.

▪ ic_get_locale

▪ ic_get_map

▪ ic_get_mark_value

▪ ic_set_locale

▪ ic_set_map

For more information about InterCall, see the InterCall Developer’s Guide.

UCI programs
UCI programs get their default settings for maps and locales from the operating system (on Windows
platforms) and from the UCI configuration file.

UCI programs communicate with a UniVerse server running on a platform. If NLS is enabled on
the platform, the data returned to the UCI program reflects the NLS character mapping and locale
settings. The UCI program can also examine and control these settings.

UCI programs need to be aware of the way NLS affects the retrieval and sending of data. For more
information about UCI, see the UCI Developer’s Guide.

Connecting to the server

When a UCI program tries to connect to a UniVerse server, a server process begins to process the
requests from the UCI program.

When the server starts, it behaves like UniVerse on that platform. For example, it uses the configurable
parameters that are initialized in the uvconfig file. The UniRPC must be running on the server
platform.

Requesting an SQLConnect

When the UCI program requests an SQLConnect, it performs the following actions specific to NLS:

▪ The server tells the client which UniVerse version is running.

▪ If the release is UniVerse 9.4 or later, the client automatically tries to specify the NLS character
map.

▪ If it succeeds, NLS is enabled on the server, and the client then tries to set the locale.

Chapter 6: NLS in client programs

72

Setting the map and locale

The client can check the following places to determine the map and locale to set:

▪ The operating system for map and locale names.

▪ The UCI configuration file for the values that it used to locate the UniVerse server. The values in the
UCI configuration file override the operating system’s map and locale settings.

Like the other UCI configuration file values, you can specify these values once for all UniVerse data
sources, or individually for each data source.

Values in the UCI configuration file

The following table describes the values in the UCI Configuration file.

Value Description

NLSMAP Name of the map to use when passing string arguments to/from client
routine. The map name must be 7-bit ASCII.

NLSLOCALE Name of the locale to use when communicating with client routines. Uses
characters in NLSMAP. Specifies values for the following categories:

NLSLCTIME Name of the locale whose TIME category is to be used.
NLSLCNUMERIC Name of the locale whose NUMERIC category is to be used.
NLSLCMONETARY Name of the locale whose MONETARY category is to be used.
NLSLCCTYPE Name of the locale whose CTYPE category is to be used.
NLSLCCOLLATE Name of the locale whose COLLATE category is to be used.
NLSLCALL Same as NLSLOCALE if one locale is specified, or can specify five locale

names separated by the slash character (/).

The UCI program can override these values with the corresponding SQLSetConnectOption calls. For
example:

status=SQLSetConnectOption(hstmt, SQL_NLSMAP, 0, "WIN:850")

The UCI program can use similar calls to change the NLS behavior of a connection any time a
transaction is not active.

Interpreting the map name

The server interprets the map name as follows:

▪ If the map name is in NLS.CLIENT.MAPS, use the corresponding value.

▪ If the map is installed, use it.

▪ Replace ':xxx' at the end of the map name with ':DEFAULT' and look in NLS.CLIENT.MAPS; if found,
use the corresponding value. Otherwise the map is unchanged and an error is returned.

Interpreting the locale name

The server interprets the locale name as follows:

Using SQLGetInfo

73

▪ If the locale name is in NLS.CLIENT.LCS, use the corresponding value.

▪ If the locale is installed, use it.

▪ Replace ':xxx' at the end of the locale name with ':DEFAULT' and look in NLS.CLIENT.LCS; if found,
use the corresponding value. Otherwise, the locale is unchanged and an error is returned.

Using SQLGetInfo

A UCI program can use the SQLGetInfo function to determine the current NLS state of the
server. Also, to read or write data that includes UniVerse system delimiters or the null value, the
program must determine the characters to which they are mapped. SQLGetInfo can provide this
information. The previous SQL values are defined in UCI.h.

BCI programs
BCI programs use UniVerse NLS only when they connect to UniVerse servers. Since BCI programs run
as part of UniVerse, the client performs its own character mapping.

BCI programs get their default settings for locales from the operating system, the UniVerse
environment, and the uvodbc.config file.

BCI programs communicate with a UniVerse server running on a platform. If NLS is enabled on the
platform, the data returned to the BCI program reflects the NLS locale settings. The BCI program can
also examine and control these settings.

BCI programs need to be aware of the way NLS affects the retrieval and sending of data. For more
information about BCI, see the UniVerse BASIC SQL Client Interface Guide.

Connecting to the server

When a BCI program tries to connect to a UniVerse server, a server process begins to process requests
from the BCI program.

When the server starts, it behaves like UniVerse on that platform. For example, it uses the configurable
parameters that are initialized in the uvconfig file. The UniRPC must be running on the server
platform.

Requesting an SQLConnect

When the BCI program requests an SQLConnect, it performs the following actions specific to NLS:

▪ The server tells the client which UniVerse version is running.

▪ If it succeeds, NLS is enabled on the server, and the client then tries to set the locale.

Setting the locale

The client can check the following places to determine the locale to set:

▪ The operating system for locale names.

Chapter 6: NLS in client programs

74

▪ The current UniVerse environment for locale names.

▪ The uvodbc.config file for the values that it used to locate the UniVerse server. The values in
the uvodbc.config file override the locale settings of the operating system and the UniVerse
environment.

Like the other uvodbc.config values, these values can be specified once for all UniVerse data
sources, or individually for each data source.

Values in the uvodbc.config file

Value Description

NLSLOCALE Name of the locale to use when communicating with client routines.
Specifies values for the following categories:

NLSLCTIME Name of the locale whose TIME category is to be used.
NLSLCNUMERIC Name of the locale whose NUMERIC category is to be used.
NLSLCMONETARY Name of the locale whose MONETARY category is to be used.
NLSLCCTYPE Name of the locale whose CTYPE category is to be used.
NLSLCCOLLATE Name of the locale whose COLLATE category is to be used.
NLSLCALL Same as NLSLOCALE if one locale is specified, or can specify five locale

names separated by the slash character (/).

The BCI program can override these values with the corresponding SQLSetConnectOption calls. For
example:

status=SQLSetConnectOption(hdbc, SQL.UVNLS.LOCALE, CA-FRENCH)

The BCI program can use similar calls to change the NLS behavior of a connection any time a
transaction is not active.

Interpreting the locale name

The server interprets the locale name as follows:

▪ If the locale name is in NLS.CLIENT.LCS, use the corresponding value.

▪ If the locale is installed, use it.

▪ Replace ':xxx' at the end of the locale name with ':DEFAULT' and look in NLS.CLIENT.LCS; if found,
use the corresponding value. Otherwise, the locale is unchanged and an error is returned.

Using SQLGetInfo

A BCI program can use the SQLGetInfo function to determine the current NLS state of the
server. Also, to read or write data that includes UniVerse system delimiters or the null value, the
program must determine the characters to which they are mapped. SQLGetInfo can provide this
information. The previous SQL values are defined in ODBC.h.

GCI subroutines
The two main points to note when writing GCI subroutines are as follows:

Specifying maps for GCI subroutines

75

▪ GCI subroutines must use the correct map.

▪ Strings that contain multibyte characters must have the correct data type.

For complete information about GCI, see the UniVerse GCI Guide.

Specifying maps for GCI subroutines

You must ensure that GCI subroutines use the correct map for passing strings. There are two ways of
doing this:

▪ With the NLSDEFGCIMAP parameter of the uvconfig file. This specifies the default map to use for
all character string parameters passed to and from GCI subroutines. For more information about
setting uvconfig parameters, see Setting configurable parameters, on page 14.

▪ With the SET.GCI.MAP command.

Use SET.GCI.MAP to retrieve the GCI map setting or to set a global GCI map for all input and output.
The SET.GCI.MAP command overrides the default setting in the NLSDEFGCIMAP parameter. If the
map name does not exist, or if NLS mode is not enabled, UniVerse returns a message. However, if you
enter the command without qualifiers, UniVerse retrieves the current map setting.

Data types for multibyte characters

Use the following GCI data types to specify multibyte characters:

Data Type Description

wchar_t* Pointer to wchar.
pwchar_t* Pointer to preallocated string memory.
twchar_t* Pointer to character memory that is allocated by the subroutine.
lwchar_t* Pointer to character memory allocated by the GCI.
wchar_tvar* Pointer to a STRING type. Contains a length and a pointer to the data.

76

Chapter 7: NLS administration menus
This chapter describes the structure and content of the NLS Administration menus.

You must be a UniVerse Administrator in the UV account to use the menus. To display the main NLS
Administration menu, use the NLS.ADMIN command. The NLS Administration menu has the
following options:

▪ Unicode. This option lets you examine the Unicode character set using various search criteria.

▪ Mappings. This option lets you view, create, or modify map descriptions or map tables.

▪ Locales. This option lets you view, create, or modify locale definitions.

▪ Categories. This option lets you view, create, or modify category files and weight tables.

▪ Installation. This option lets you install maps into shared memory or edit the uvconfig file.

The options lead to further menus that are described in the following sections.

Unicode menu
Use the Unicode menu to examine the Unicode character set. The following options are available:

▪ Characters. This option leads to a further menu containing the following options:
▫ List All descriptions. Provides a very long listing of all the Unicode characters.

▫ by Value. Prompts you to enter a Unicode 4-digit hexadecimal value, then returns its
description.

▫ by Char description. Prompts you to enter a partial description of a character, then returns
possible matches.

▫ by block Number. Lists all characters in a given Unicode block in Unicode order.

▫ by Block descriptions. Lists the Unicode block numbers, the official description of what each
block contains, the start and end points in the Unicode set, and the number of characters in the
block.

▫ Ideograph xref. The start of further levels of menu, which are of interest to multibyte users
only. These let you do the following:
Display a listing of how the Unicode ideographic area maps to Chinese, Japanese, and Korean
standards
Search for a character in Unicode, given its external character set reference number
Convert between external encodings and standards reference numbers, for example, convert
shift-JIS to row and column format

▫ Mnemonic search. Looks up entries in the MNEMONICS input map by description.

▪ Alphabetics. This option lists the NLS.CS.ALPHAS file. This file contains records that define
ranges of code points within which characters are considered to be alphabetic. Use the Ctype
category to modify these ranges.

▪ Digits. This option lists the NLS.CS.TYPES file. This file contains records that describe code
points normally considered to represent the digits 0 through 9 in different scripts. Use the Numeric
category to modify these ranges.

▪ Non-printing. This option lists the NLS.CS.TYPES file. This file contains records that describe
code points normally considered to be nonprinting characters. Use the Ctype category to modify
these ranges.

Mappings menu

77

▪ case Rules. This option lists the NLS.CS.CASES file. This file describes the normal rules for
converting uppercase to lowercase and lowercase to uppercase for all code points in Unicode. Use
the Ctype category to modify these ranges.

▪ Exit.

Mappings menu
Use the Mappings menu to examine, create, and edit map description and map table records, and to
compile maps. The following options are available:

▪ View. Displays a listing of all map description records.

▪ Descriptions. Leads to a submenu for manipulating map descriptions, that is, records in the
NLS.MAP.DESCS file. The Xref option produces a cross-reference listing that lets you see which
maps and tables are being used as the basis for others.

▪ Tables. Leads to a submenu for manipulating map tables, that is, records in the
NLS.MAP.TABLES file. From the submenu you can list, create, edit, delete, and cross-reference
map tables.

▪ Clients. Administers the NLS.CLIENT.MAPS file, which provides synonyms between map names
on a client and the UniVerse NLS maps on the server. You can list, create, edit, and delete records
using this option.

▪ Build. Compiles a single map.

Locales menu
Use the Locales menu to examine, create, and edit locale definitions. The following options are
available:

▪ List All. Lists all the locales that are available in UniVerse, that is, all the records in the
NLS.LC.ALL file. You may need to build the locales in order to install them into shared memory.

▪ View. Prompts you for the name of a locale, then lists the record for that locale.

▪ Create. Creates a new locale record.

▪ Edit. Edits an existing locale record.

▪ Delete. Deletes a locale record

▪ Xref. Cross-references a locale. This lets you see the relationship between various locale
definitions.

▪ Clients. Administers the NLS.CLIENT.LCS file, which provides synonyms between locale names
on a client, and the UniVerse NLS locales on the server. You can list, create, edit, and delete records
using this option.

▪ Report. Lets you produce a report on records in locale categories. You can choose from All, Time/
date, Numeric, Monetary, Ctype, and Collate.

▪ Build. Builds a locale.

Categories menu
From the Categories menu you can administer the NLS category files for different types of convention.
The following options are available:

▪ Time/date

Chapter 7: NLS administration menus

78

▪ Numeric

▪ Monetary

▪ Ctype

▪ Collate

▪ Weight tables

▪ Language info

The first five options call submenus that let you list, view, create, edit, delete, and cross-reference
records in the specific category. The final two options have differences as described below.

▪ Weight tables. This option has two additional suboptions as follows:
▫ Accent weights. This option lists all the records in the NLS.WT.LOOKUP file that refer to

accents.

▫ Case weights. This option lists all the records in the NLS.WT.LOOKUP file that refer to casing.

▪ Language info. This option administers the NLS.LANG.INFO file and lets you list, view, create,
edit, delete, and cross-reference records in the file.

Installation menu
Use the Installation menu to edit the system configuration file or to install maps in shared memory.
The following options are available:

▪ Edit uvconfig. This option lets you edit the configurable parameters in the uvconfig file. You can
edit all the parameters, or just those referring to NLS, maps, locales, or clients.

▪ Maps. This option leads to a further menu with the following options:
▫ Configure. Runs the NLS map configuration program.

▫ All binaries. Lists all the built maps that are available to install into shared memory.

▫ In memory. Lists the names of all maps currently installed in shared memory and available for
use within UniVerse.

▫ (re-)Build. Compiles a single map in the same way as the Build option on the Mappings menu.

▫ Delete binary. Removes a binary map. This takes effect when UniVerse is restarted.

▪ Locales. This option leads to a further menu with the following options:
▫ Configure. Runs the NLS locale configuration program.

▫ All binaries. Lists all the built locales that are available to install into shared memory.

▫ In memory. Lists the names of all locales currently installed in shared memory and available
for use within UniVerse. Use this option if the SET.LOCALE command fails with the error locale
not loaded. This option lets you identify locales that are built but not loaded.

▫ (re-)Build. Compiles a single locale.

▫ Delete binary. Removes a binary locale. This takes effect when UniVerse is restarted.

▪ By language. This option lets you configure NLS by specifying a particular language. The
configuration program selects the appropriate locales and maps to be built and an appropriate
configuration for the uvconfig file.

79

Appendix A: The NLS database
This appendix describes the files in the NLS database. The NLS database is in the nls subdirectory of
the UV account directory. The nls directory contains the subdirectories charset, locales, and maps.

Each subdirectory of the NLS directory contains further subdirectories, such as the listing and install
subdirectories. listing contains listing information generated when building maps and locales (if the
user selects this option). install contains the binary files that are loaded into memory.

You should use the NLS.ADMIN command to perform all NLS administration.

The VOC names for NLS files start with the prefix NLS (this prefix is absent if you view the files from the
operating system). The second part of the file name indicates the logical group that the file belongs to.
The logical groups are as follows:

These letters... Indicate this file group...

CLIENT Data received from client programs
CS Information about Unicode character sets
LANG Languages
LC Locales
MAP Character set maps
WT Weight tables

The third part of the file name indicates the contents of the file. For example, the file called
NLS.LC.COLLATE is an NLS file belonging to the locales group that contains information about
collating sequences.

The following table lists all the files in the NLS database.

File Description

NLS.CLIENT.LCS Defines the locales to be used by client programs connecting to UniVerse.
For a description of the record format for this file, see Locales for client
programs, on page 22.

NLS.CLIENT.MAPS Defines the character set used by client programs. For a description of the
record format for this file, see Maps for client programs, on page 21.

NLS.CS.ALPHAS Defines which characters are defined as alphabetic in the Unicode
standard. Each record ID is a hexadecimal code point value that indicates
the start of a range of characters. The record itself specifies the last
character in the range. These default values can be overridden by a national
convention. You should not modify this file; it is for information only.

NLS.CS.BLOCKS Defines the blocks of consecutive code point values for characters that are
normally used together as a set for one or more languages. The record IDs
are block numbers. This file is cross-referenced by the NLS.CS.DESCS file.
You should not modify this file; it is for information only.

NLS.CS.CASES Defines those characters that have an uppercase and lowercase version,
and how they map between the two, according to the Unicode standard.
These default values can be overridden by a national convention. Each
record ID is the hexadecimal code point value for a character. You should
not modify this file; it is for information only.

NLS.CS.DESCS Contains descriptions of every character supported by UniVerse NLS. Each
character has its own record, using its hexadecimal code point value as
the record ID. The descriptions are based on those used by the Unicode
standard. You should not modify this file; it is for information only.

Appendix A: The NLS database

80

File Description

NLS.CS.TYPES Defines which characters are numbers, nonprintable characters, and so on,
according to the Unicode standard. These default values can be overridden
by a national convention. Each record ID is the hexadecimal code point
value for a character. You should not modify this file; it is for information
only.

NLS.LANG.INFO Contains information about languages. Provides possible mappings
between language, locale and character set map. It is used for installing
NLS and reporting on locales, and should not be modified.

NLS.LC.ALL Holds records for all the locales known to UniVerse. The record IDs are the
locale names. The fields of each record are the IDs of records in other locale
files. These files contain data about the categories that make up a locale
(Time, Numeric, and so on). For a description of the record format for this
file, see Creating new locales, on page 35.

NLS.LC.COLLATE Each record in this file defines a collating sequence used by a locale. The
collating sequences are defined according to how they differ from the
default collating sequence. For a description of the record format for this
file, see Format of convention records, on page 35.

NLS.LC.CTYPE Each record in this file holds character typing information used in a locale,
that is, which characters are alphabetic, numeric, lowercase, uppercase,
nonprinting, and so on. The character types are defined according to how
they differ from the default character typing. For a description of the record
format for this file, see Format of convention records, on page 35.

NLS.LC.MONETARY Each record in this file holds the monetary formatting convention used in
a locale. For a description of the record format for this file, see Format of
convention records, on page 35.

NLS.LC.NUMERIC Each record in this file holds the numeric formatting convention used in
a locale. For a description of the record format for this file, see Format of
convention records, on page 35.

NLS.LC.TIME Each record in this file holds the time and date formatting convention for
a locale. For a description of the record format for this file, see Format of
convention records, on page 35.

NLS.MAP.DESCS Contains descriptions of every map known to UniVerse. The record ID of
each map is the map name used in UniVerse commands or UniVerse BASIC
programs. The record IDs must comprise ASCII-7 characters only. For a
description of the record format for this file, see Creating a map description,
on page 28.

NLS.MAP.TABLES A type 19 file that contains the map tables for mapping an external
character set to the UniVerse internal character set. For more information
about the structure of this file, see Creating a map table, on page 29.

NLS.WT.LOOKUP Contains weightings given to characters during a sort, based on the
Unicode standard. This file should not be modified.

NLS.WT.TABLES Contains specific weight information about characters used in a locale. For
more information about the structure of this file, see Editing weight tables,
on page 50.

81

Appendix B: National convention hooks
The national conventions support described in the NLS Guide does not cover all needs. It is designed
to be as table-driven as possible, with all tables visible to and changeable by a knowledgeable user.
For maximum flexibility, we also support user-written code hooks. These are routines you write to
implement specific NLS functions and then hook them into UniVerse on request.

Hooks are points in UniVerse code where an NLS convention is in force; at such points, user-written
code can be plugged in to intercept an action that NLS would otherwise perform. Hook routines must
be written in C. Each routine has a fixed name and interface, as described later.

All string data is passed in and out of hooks in external format (for example, as multibyte 8-bit strings).
That is, a map name (other than UNICODE) associated with a hook is used to map string data from
UniVerse internal format to external format before calling the hook. All hooks for a particular locale
specify the same map name. To accommodate CHAR(0) bytes, STRING data types are used (a variable-
length character string) rather than null-terminated C strings.

This hook mechanism is available only if both NLS mode and locale support are enabled. The hooks
also introduce some areas of potential internationalization that are not otherwise supported by NLS,
notably:

▪ Specialized FMT format codes

▪ Soundex 'sounds-like' replacement

General hook mechanism
You write C code conforming to the naming and calling conventions described later, and link them into
UniVerse using the tools described. You then set up a locale record in which the HOOK_LIBRARY_ID
and HOOK_MAPNAME fields are filled in. These identify which hook library to invoke if you set that
locale, and what map to use to convert strings to external form. The hook library must contain an
ih_init function and whatever other ih_… functions it wants to implement.

When the SET.LOCALE command or the SETLOCALE function invokes the locale, its
HOOK_LIBRARY_ID is used to call the appropriate ih_init function. From now on, assume that HID is
the specific “hook_locale_id”, which can be any alphanumeric string (for example, GB, HEBREW, and
so forth). So UniVerse tries to call ih_init_HID. If there is no such function linked, the locale cannot
be set. Otherwise, ih_init_HID returns a list of which other hook routines are included in the library.
This information is then used elsewhere in UniVerse where conventions would apply. If the hook in
question is set, UniVerse tries to call the appropriate ih_xxx_HID function.

For ease of implementation, the file sample/NLSHKtmplt.c in the UV account directory provides
a complete set of stub routines. Copy this file to create a hook library of your own, replacing all HID
suffixes with your chosen HID. Then add code to the hooks you want to implement, and change
ih_init_HID so it says which functions contain real code. This avoids unnecessary complication in the
linking mechanism (since all functions of a library exist, even if empty), but also stops the performance
overhead of calling empty functions. Basically, the UniVerse code makes a call to ih_xxx_HID only if the
current locale says it’s worth it. The use of HID lets you develop multiple hook libraries independently
and then link them together easily—all it requires is that they choose different HIDs.

The following routines can be in a hook library:

▪ ih_case_HID()

▪ ih_compare_HID()

▪ ih_ctype_HID()

▪ ih_fmt_HID()

Appendix B: National convention hooks

82

▪ ih_iconv_HID()

▪ ih_lendp_HID()

▪ ih_match_HID()

▪ ih_oconv_HID()

▪ ih_soundex_HID()

▪ ih_trim_HID()

Each hook has a similar form. There are usually in_str, out_str, and replaced_char arguments. All the
functions return an integer value with the same basic meaning.

int ih_xxx_HID(STRING in_str, int replaced_char, STRING *out_str, … other args)

Parameter Description

in_str (I) Incoming data in external format as mapped by the HOOK_MAPNAME
map (which defaults to the value in the uvconfig parameter
NLSOSMAP).

replaced_char (I) Set to 1 if in_str contains a character that had to be mapped to the
replacement character in the external set.

out_str (O) Pointer to the STRING structure containing outgoing data in the same
external character set. Only valid if the returned value is NLSHK_HKE_OK
or NLSHK_HKE_SOME_CONV.

The returned value can be one of the following:

Value Description

NLSHK_HKE_OK Hook routine did its stuff, no further action required by UniVerse—use
what is in out_str.

NLSHK_HKE_NO_CONV Hook routine did nothing, UniVerse pretends it was never called and
continues processing the in_str.

NLSHK_HKE_SOME_CONV Hook routine did something but wants UniVerse to continue its own
processing, using the contents of out_str rather than in_str. The data is
first mapped back to internal form.

The ih_xxx_HID routines in the sample/NLSHKtmplt.c file ignore all input arguments and simply return
NLSHK_HKE_NO_CONV.

Support from UniVerse
The STRING data type used in the interface definitions requires the UniVerse file gcidir/include/
uv.h in the UV account directory to be included in the source of the hook library.

Also required is the UniVerse include file gcidir/include/flavor.h, which contains definitions
for the account flavor types used by ih_fmt_HID, ih_iconv_HID, and ih_oconv_HID.

The NLS hook table must be initialized by the ih_init_HID routine. The NLS hook table is a global
structure, a reference to which can be found in the public include file gcidir/include/
NLShooks.h. Include this file in your hook library source files.

Memory management

83

Memory management
Hook routines are responsible only for the memory they allocate to perform their allotted function, for
example, memory for return parameters and temporary variables. They do not need to worry about
memory occupied by input parameters; UniVerse deals with this.

Memory must be allocated and freed using the standard system memory allocator interfaces:
malloc (and realloc) to allocate memory and free to deallocate it.

Using hooks in UniVerse
To make UniVerse use a hook library, complete the following steps:

1. Create a GCI definition for the initialization routine.
2. Compile the hook library.
3. Build the hook library.
4. Test the hooks.
5. Install the hook library.

Since the GCI identifies the hook library to UniVerse, and since the GCI differs slightly on the UNIX and
Windows versions of UniVerse, there are a few differences in the steps required on both platforms. See
the UniVerse GCI Guide for details on how to use the GCI.

In the examples shown, a set of hook library routines is written in the file my_hooks.c.

Create a GCI definition for the initialization routine

On Windows platforms only, you must create a GCI definition file (GCI menu, option 1) to hold the
definition of the hook library initialization routine. Remember the name of the file: you will need it
when you build the hook library.

Then, on both platforms, choose the GCI menu option to add a GCI subroutine definition (GCI menu,
option 1 on UNIX, option 2 on Windows platforms). On Windows platforms, use the GCI definition file
you just created.

The purpose is to add a definition for the initialization routine ih_init_HID, as follows:

Attribute Definition

Subroutine name: ih_init_HID
Language: C
External name: ih_init_HID
Module name: my_hooks <--- i.e. my_hooks.c
Description: My hooks
Number of args: 0
Return value: void

HID is the hook library identifier, for example, HEBREW. This identifies the initialization routine to
UniVerse and lets it be called.

Appendix B: National convention hooks

84

Compile the hook library

Check that the hook library source file (for example, my_hooks.c) compiles, and put a copy of the
source file in the GCI directory gcidir of the UV account directory.

Build the hook library

Build the hook library (on UNIX platforms, GCI menu option 4, Make a new u2gci library, on Windows
platforms, option 5, Make a GCI Library from a GCI Definition File). This will ultimately compile the
hook library source file. On Windows platforms, remember to specify the name of the GCI definition
file that you created.

On UNIX and Linux platforms, the hook library object file produced by the compilation will also be
linked with UniVerse to produce a new u2gci library, libu2gci.so or libu2gci.sl, in the UV
home account directory.

On Windows platforms, the sequence of events is slightly different. The result of menu option 5 is a
dynamic link library (DLL) in the GCI directory that has the same name as the GCI definition file that
you created.

Test the hooks

Before you can use the hooks, you must create a locale with the HOOK_LIBRARY_ID and
HOOK_MAPNAME fields set appropriately. Do this from the NLS.ADMIN menu in the UV account.
The HOOK_LIBRARY_ID must be the same as the HID suffix given to the hook routines. The hooks are
designed to work with a given character set, so set the HOOK_MAPNAME to the corresponding NLS
map name for this character set.

To use the hook library routines, the NLSLCMODE parameter in the uvconfig file must be set to 1.
You must stop UniVerse, run uvregen, then restart UniVerse for the new settings to take affect.

On UNIX and Linux platforms, set the LD_LIBRARY_PATH environment variable (or LIBPATH on AIX) to
include your UniVerse home directory first, then execute the uvsh command. When using the library
file in the UniVerse home directory, it will not disrupt other users because by default the libraries in the
UniVerse bin directory are used first.

On Windows platforms, set up the environment variable UVGCIDLLS to include the path of the
DLLs generated by the build in the gcidir directory (or add the paths to the system variable
UvGCILibraries), then start up UniVerse using the bin\uvsh executable.

When this is done, the hooks can be activated using the SET.LOCALE command or the SETLOCALE
BASIC function. This executes the ih_init_HID routine and makes the hooks ready for use.

Install the hook library

When testing is complete, you can install the hook library on a UNIX system using the GCI menu,
option 5, Install new u2gci library, and on a Windows system, option 6, Install a GCI Library. This
makes the hooks available to all users on the system without having to change anything in their
environment.

NLS hook interface definitions

85

NLS hook interface definitions
Here are a few general rules regarding hook functions:

▪ A hook function should not free any strings passed to it.

▪ A hook function is called only if the corresponding UniVerse BASIC statement is executed. For
example, the hook for iconv is called only if a UniVerse BASIC program calls ICONV. If an internal
function of UniVerse calls iconv, the hook function does not execute, as is the case with SQL DML
functions.

▪ If a hook function returns NLSHK_HKE_NO_CONV, it should not return any allocated memory.

▪ All NLSHK_xxx tokens are in the include file gcidir/include/NLShooks.h in the UV account
directory.

Hook functions
The initialization function ih_init_HID initializes each element of the Hook table to a corresponding
hook function or sets it to null as shown below. You should replace HID with your hook library ID. In
the example only the CASE hook is supplied.

void_ih_init_HID()
{
NLSHKHookTable[NLSHK_TABLE_CASE] = ih_case_HID;
NLSHKHookTable[NLSHK_TABLE_COMPARE] = 0;
NLSHKHookTable[NLSHK_TABLE_CTYPE] = 0;
NLSHKHookTable[NLSHK_TABLE_FMT] = 0;
NLSHKHookTable[NLSHK_TABLE_ICONV] = 0;
NLSHKHookTable[NLSHK_TABLE_LENDP] = 0;
NLSHKHookTable[NLSHK_TABLE_MATCH] = 0;
NLSHKHookTable[NLSHK_TABLE_OCONV] = 0;
NLSHKHookTable[NLSHK_TABLE_SOUNDEX] = 0;
NLSHKHookTable[NLSHK_TABLE_TRIM] = 0;
}

The case hook function is called in response to a UniVerse BASIC call to DOWNCASE or UPCASE. When
ICONV or OCONV is called with a code of lowercase or uppercase, the CASE hook function is not
called. The hook function must be defined as follows:

Argument Definition

int ih_case_HID(in_str, replaced_char, out_str, conv_type)
STRING in_str;
int replaced_char;
STRING *out_str;
int conv_type;

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
out_str Output STRING variable whose text field is malloc’d by the

hook function if the hook function returns NLSHK_HKE_OK or
NLSHK_HKE_SOME_CONV.

conv_type Input argument to contain NLSHK_CT_DOWNCASE or
NLSHK_CT_UPCASE.

Appendix B: National convention hooks

86

The hook function’s return value should be:

Return Value Description

NLSHK_HKE_NO_CONV No conversion done by hook.
NLSHK_HKE_OK Complete conversion done by hook.
NLSHK_HKE_SOME_CONV Some conversion done by hook.

If the hook function returns an invalid value, UniVerse issues a warning.

The compare hook function is called in response to a call to:

▪ The BASIC COMPARE function

▪ Simple comparisons of the type <, =, >, LE, GE, NE

▪ Vector comparisons like LES, LTS, GTS, GES, EQS, NES

The hook function must be defined as follows:

Argument Value

int ih_compare_HID(in_str1, rep_char1, in_str2, rep_char2, type, justprec,
pretval)

STRING in_str1;
int rep_char1;
STRING in_str2;
int rep_char2;
int type, justprec, *pretval;
{
 *pretval = 0;

…

Argument Description

in_str1 The first input string.
rep_char1 Set to 1 if a character was replaced in in_str1.
in_str2 The second input string.
rep_char2 Set to 1 if a character was replaced in in_str2.

Hook functions

87

Argument Description

Input arguments to contain the following values while pretval is an
output argument:

type

justprec

▪ COMPARE

type is NLSHK_CO_COMPARE.
justprec contains 0 for left justification (default), 1 for right
justification.

▪ Simple comparisons of the type <, =, >, LE, GE, NE type
is one of NLSHK_CO_GREATER, NLSHK_CO_GTEQUAL,
NLSHK_CO_EQUAL, NLSHK_CO_NEQUAL, NLSHK_CO_LTEQUAL, or
NLSHK_CO_LESSTHAN depending on the type of comparison being
performed.
justprec is the current precision (if required) or 0.

▪ Vector comparisons like LES, LTS, GTS, GES, EQS, NES.
type is one of NLSHK_CO_GREATER, NLSHK_CO_GTEQUAL,
NLSHK_CO_EQUAL, NLSHK_CO_NEQUAL, NLSHK_CO_LTEQUAL, or
NLSHK_CO_LESSTHAN depending on the type of comparison being
performed.
justprec is the current precision (if required) or 0.

pretval Must be set to one of the following if the return value is NLSHK_HKE_OK:

<0 If in_str1 is less than in_str2

0 If in_str1 and in_str2 are equal

>0 If in_str1 is greater than in_str2

The hook function’s return value should be NLSHK_HKE_NO_CONV or NLSHK_HKE_OK. If the hook
function returns an invalid value, UniVerse issues a warning.

The ctype hook function is called in response to a call to the UniVerse BASIC function ALPHA, which
checks whether a string is alphabetic. The hook function must be defined as follows:

Argument Value

int ih_ctype_HID(in_str, replaced_char, pretval)
STRING in_str;
int replaced_char;
int *pretval;
{
 *pretval = 0;

…

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
pretval Must be set to one of the following if the return value is

NLSHK_HKE_OK:

1 If in_str is alphabetic

0 If in_str is not alphabetic

Appendix B: National convention hooks

88

The hook function’s return value should be NLSHK_HKE_NO_CONV or NLSHK_HKE_OK. If the hook
function returns an invalid value, UniVerse issues a warning.

The match hook function is called in response to a call to the UniVerse BASIC function MATCH or
MATCHFIELD, which check for the presence of a pattern in a string. The hook function must be
defined as follows:

Argument Value

int ih_match_HID(in_str1, rep_char1, mask_str, rep_char2, out_str,
fieldnum, pmatched)

STRING in_str1;
int rep_char1;
STRING mask_str;
int rep_char2;
STRING *out_str;
int fieldnum;
int *pmatched;
{
 *pmatched = 0;

…
}

Argument Description

in_str1 The input string.
rep_char1 Set to 1 if a character was replaced in in_str1.
mask_str The mask to use.
rep_char2 Set to 1 if a character was replaced in mask_str.
out_str Output STRING variable whose text field is malloc’d by the hook function

in certain cases.
fieldnum 0 if the hook function is for MATCH, otherwise the field number specified

to the MATCHFIELD function.
pmatched Output parameter that indicates whether a match was found (see

below).

The hook function’s return value should be NLSHK_HKE_NO_CONV, NLSHK_HKE_OK or
NLSHK_HKE_SOME_CONV. If the hook function returns an invalid value, UniVerse issues a warning.

If the hook function is for MATCH:

▪ If the return value is NLSHK_HKE_NO_CONV, the pmatched argument is irrelevant. out_str should
not be set.

▪ If the return value is NLSHK_HKE_SOME_CONV, the pmatched argument is irrelevant. The hook
function should set out_str to contain the relevant output.

▪ If the return value is NLSHK_HKE_OK, the hook function should set the pmatched argument (1 if
pattern found, 0 otherwise). out_str should not be set.

If the hook function is for MATCHFIELD:

▪ If the return value is NLSHK_HKE_NO_CONV, the pmatched argument is irrelevant. out_str should
not be set.

Hook functions

89

▪ If the return value is NLSHK_HKE_SOME_CONV, the pmatched argument is irrelevant. The hook
function should set out_str to contain the relevant output.

▪ If the return value is NLSHK_HKE_OK, the pmatched argument is irrelevant. The hook function
should set out_str to contain the relevant output.

The format hook function is called in response to a call to the UniVerse BASIC functions FMT and
FMTS. The hook function must be defined as follows:

Argument Definition

int ih_fmt_HID(in_str, replaced_char, out_str, fmt_code, options_flag,
precision)

STRING in_str;
int replaced_char;
STRING *out_str;
STRING fmt_code;
int options_flag;
int precision;

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
out_str Output STRING variable whose text field is malloc’d by the hook

function if the hook function’s return value is NLSHK_HKE_OK or
NLSHK_HKE_SOME_CONV.

fmt_code Input argument to contain the format code supplied to FMT or FMTS.
options_flag Input argument to contain one of the following:

IDEAL_FLAVOR, PICK_FLAVOR, INFO_FLAVOR, REAL_FLAVOR,
IN2_FLAVOR, PIOPEN_FLAVOR

Also, if fmt_code is in display positions, the options_flag is ORed with
DP_FLAVOR.

See the file gcidir/include/flavor.h for these tokens.
precision The current UniVerse precision.

The hook function’s return value should be NLSHK_HKE_NO_CONV, NLSHK_HKE_OK,
NLSHK_HKE_SOME_CONV, NLSHK_HKE_CC_INVALID or NLSHK_HKE_INPUT_INVALID.
NLSHK_HKE_CC_INVALID can be used to indicate an invalid conversion code and NLSHK_HKE_IN-
PUT_INVALID to indicate invalid data was input for formatting. If the hook function returns an invalid
value, UniVerse issues a warning.

The iconv and oconv hook functions are called in response to a call to the BASIC functions ICONV,
OCONV, ICONVS, or OCONVS. The hook function must be defined as follows:

Argument Definition

int ih_iconv_HID(in_str, replaced_char, out_str, conv_code, options_flag)
int ih_oconv_HID(in_str, replaced_char, out_str, conv_code, options_flag)
STRING in_str;
int replaced_char;
STRING *out_str;
STRING conv_code;

Appendix B: National convention hooks

90

Argument Definition

int options_flag;

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
out_str Output STRING variable whose text field is malloc’d by the hook

function if the hook function’s return value is NLSHK_HKE_OK or
NLSHK_HKE_SOME_CONV.

conv_code Input argument to contain the conversion code to apply.
options_flag Input argument to contain one of the following:

IDEAL_FLAVOR, PICK_FLAVOR, INFO_FLAVOR, REAL_FLAVOR,
IN2_FLAVOR, PIOPEN_FLAVOR

See the file gcidir/include/flavor.h for these tokens.

The hook function’s return value should be NLSHK_HKE_NO_CONV, NLSHK_HKE_OK,
NLSHK_HKE_SOME_CONV, NLSHK_HKE_CC_INVALID or NLSHK_HKE_INPUT_INVALID.
NLSHK_HKE_CC_INVALID can be used to indicate an invalid conversion code and NLSHK_HKE_IN-
PUT_INVALID to indicate invalid data was input for formatting. If the hook function returns an invalid
value, UniVerse issues a warning.

The lendp hook function is called in response to a call to the UniVerse BASIC functions LENDP and
LENSDP. The hook function must be defined as follows:

Argument Definition

int ih_lendp_HID(in_str, replaced_char, pretval)
STRING in_str;
int replaced_char;
int *pretval;
{
 *pretval = 0;

…
}

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
pretval Must be set to the length in display positions of the input string when the

return value is NLSHK_HKE_OK.

The hook function’s return value should be NLSHK_HKE_NO_CONV or NLSHK_HKE_OK. If the hook
function returns an invalid value, UniVerse issues a warning.

The soundex hook function is called in response to a call to the UniVerse BASIC function SOUNDEX.
The hook function must be defined as follows:

Argument Definition

int ih_soundex_HID(in_str, replaced_char, out_str)
STRING in_str;
int replaced_char;

Hook functions

91

Argument Definition

STRING *out_str;

Argument Description

in_str The input string.
replaced_char Set to 1 if a character was replaced in in_str.
out_str Output STRING variable whose text field is malloc’d by the

hook function if the hook function returns NLSHK_HKE_OK or
NLSHK_HKE_SOME_CONV.

The hook function’s return value should be NLSHK_HKE_NO_CONV, NLSHK_HKE_OK, or
NLSHK_HKE_SOME_CONV. If the hook function returns an invalid value, UniVerse issues a warning.

The trim hook function is called in response to a call to the UniVerse BASIC functions TRIM, TRIMB,
TRIMF, TRIMS, TRIMBS, and TRIMFS. For TRIM, the hook function is called only if expression is
the sole argument specified in the TRIM function call (see UniVerse BASIC for more details). The hook
function must be defined as follows:

Argument Definition

int ih_trim_HID(in_str, replaced_char, out_str, trim_type)
STRING in_str;
int replaced_char;
STRING *out_str;
int trim_type;

The hook function’s return value should be NLSHK_HKE_NO_CONV, NLSHK_HKE_OK, or
NLSHK_HKE_SOME_CONV. If the hook function returns an invalid value, UniVerse issues a warning.

92

Appendix C: NLS quick reference
This section contains reference tables for NLS.

• UniVerse commands
Some UniVerse commands are only available in NLS mode, while other UniVerse commands just
behave differently in NLS mode.

• UniVerse BASIC statements and functions
Some UniVerse BASIC statements and functions provide new functionality when NLS is enabled.

• Map tables
Map tables are supplied with UniVerse for major character sets worldwide.

• UniVerse locales
Locales are supplied with UniVerse.

• Unicode blocks
Unicode is divided into blocks of related characters. These correspond approximately to the scripts
used for different families of languages.

UniVerse commands
Some UniVerse commands are only available in NLS mode, while other UniVerse commands just
behave differently in NLS mode.

The following table lists UniVerse commands that are available only in NLS mode.

Command Description

GET.FILE.MAP Displays the map name associated with the specified file.
GET.LOCALE Retrieves the current locale settings.
LIST.LOCALES Lists the current locales.
LIST.MAPS Lists maps that are built and installed in shared memory.
NLS.UPDATE.ACCOUNT Updates an account to NLS mode.
RESTORE.LOCALE Restores a locale.
SAVE.LOCALE Saves a locale.
SET.FILE.MAP Associates a map name with a file.
SET.GCI.MAP Sets a map for passing character string parameters to and from GCI

subroutines.
SET.LOCALE Sets or restores a locale.
SET.SEQ.MAP Associates a map with sequential I/O.
UNICODE.FILE Converts a mapped file to the UniVerse internal character set, or vice

versa, without copying the file.

The next table lists UniVerse commands that behave differently in NLS mode.

Command Description

ANALYZE.FILE Reports the map name on a file.
ASSIGN Defines a map name for an assigned tape device.
BASIC Optionally sets a map during compilation using the $MAP compiler

directive.

UniVerse BASIC statements and functions

93

Command Description

COPY, CP, and CT Have a UNICODE keyword that prints each character as a Unicode 4-
digit hexadecimal value. The HEX keyword displays internal hexadecimal
character values.

CREATE.FILE Adds a map name to a file as specified in the

NLSNEWFILEMAP and NLSNEWDIRMAP parameters in the uvconfig
file.

ED The ED command has an extended up-arrow mode for undisplayable
multinational characters.

FILE.STAT Reports the map name on a file.
GET.TERM.TYPE Reports the name of the terminal or auxiliary printer map.
SETPTR (UNIX),
SETPTR (Windows
Platforms)

Optionally associates a map with a print channel in order to determine
display widths for formatting spooled output.

SET.TERM.TYPE Sets a map for a terminal or auxiliary printer.
T.ATT Defines a map name for an assigned tape device.
TERM Reports the name of the terminal or auxiliary printer map.

The next table contains other useful NLS commands.

Command Description

EDIT.CONFIG Edits the uvconfig file. This command is also available by choosing
Installation → Edit uvconfig from the NLS Administration menu.

NLS.ADMIN Enters the NLS Administration menu system.

Parent topic: NLS quick reference

UniVerse BASIC statements and functions
Some UniVerse BASIC statements and functions provide new functionality when NLS is enabled.

The following table lists these statements and functions.

Statement/Function Description

AUXMAP Switches to a terminal’s auxiliary map.
FILEINFO Returns a file’s map name.
FMTDP Formats a string in display positions rather than character positions. IF

NLS mode is off, FMTDP acts like FMT.
FMTSDP Formats a dynamic array in display positions rather than character

positions. If NLS mode is off, FMTSDP acts like FMTS.
FOLDDP Determines where to fold a string using display positions. If NLS mode is

off, FOLDDP acts like FOLD.
FOOTING Calculates gaps in footings using display positions.
GETLOCALE Retrieves the names of specified categories of the current locale.
HEADING Calculates gaps in headings using display positions.
ICONV Uses the NLS, MU0C, and other new conversion codes.
INPUTDP Defines input formats using display positions.

Appendix C: NLS quick reference

94

Statement/Function Description

LENDP Returns the length of a string in display positions. If NLS mode is off,
LENDP acts like LEN.

LENSDP Returns the length of a dynamic array in display positions. If NLS mode is
off, LENSDP acts like LEN.

LOCALEINFO Retrieves the settings of the current locale.
OCONV Uses the NLS, MU0C, and other new conversion codes.
SETLOCALE Changes the setting of one or all categories for the current locale.
STATUS Returns additional values for READ and WRITE statements that

encounter unmappable characters.
SYSTEM Returns a value to indicate the current NLS mode and other NLS

parameters.
UNICHAR Generates a single character in external format.
UNICHARS Generates a dynamic array in external format.
UNISEQ Returns the Unicode value of a single character in internal format.
UNISEQS Returns a dynamic array of Unicode values in internal format.
UPRINT Sends data to a printer without using the printer’s map.
!GETPU Determines the map name associated with a print channel.

Parent topic: NLS quick reference

Map tables
Map tables are supplied with UniVerse for major character sets worldwide.

The following list displays these map tables. The left column contains the name of the map, the
middle column contains the name of the map table used by the map (in NLS.MAP.TABLES), and the
right column contains a description of the map.

MAP.DESCS...... Table ID....... Map
description..........................
ASCII ASCII #Standard ASCII 7-bit set
ASCII+C1 ASCII ASCII 7-bit + C1 control chars
ASCII+MARKS UV-MARKS #Std ASCII 7-bit set for type 1&19 files w/
marks
BIG5 BIG5 #TAIWAN: "Big 5" standard
C0-CONTROLS C0-CONTROLS Standard ISO2022 C0 control set, chars 00-
1F+7F
C1-CONTROLS C1-CONTROLS Standard 8-bit ISO control set, 80-9F
EBCDIC EBCDIC #IBM EBCDIC as implemented by standard
uniVerse
 - full set
EBCDIC-037 EBCDIC-037 #IBM EBCDIC variant 037
EBCDIC-1026 EBCDIC-1026 #IBM EBCDIC variant 1026 (Turkish)
EBCDIC-500V1 EBCDIC-500V1 #IBM EBCDIC variant 500V1
EBCDIC-875 EBCDIC-875 #IBM EBCDIC variant 875 (Greek)
EBCDIC-CTRLS EBCDIC-CTRLS IBM EBCDIC as implemented by standard uniVerse
 - control chars only
GB2312 GB2312-80 #CHINESE: EUC as described by GB 2312
ISO8859-1 ISO8859-1 #Standard ISO8859 part 1: Latin-1
ISO8859-1+MARKS UV-MARKS #Standard ISO8859 part 1: Latin-1 for type 1&
 19 files with marks
ISO8859-10 ISO8859-10 #Standard ISO8859 part 10: Latin-6

Map tables

95

ISO8859-2 ISO8859-2 #Standard ISO8859 part 2: Latin-2
ISO8859-3 ISO8859-3 #Standard ISO8859 part 3: Latin-3
ISO8859-4 ISO8859-4 #Standard ISO8859 part 4: Latin-4
ISO8859-5 ISO8859-5 #Standard ISO8859 part 5: Latin-Cyrillic
ISO8859-6 ISO8859-6 #Standard ISO8859 part 6: Latin-Arabic
ISO8859-7 ISO8859-7 #Standard ISO8859 part 7: Latin-Greek
ISO8859-8 ISO8859-8 #Standard ISO8859 part 8: Latin-Hebrew
ISO8859-9 ISO8859-9 #Standard ISO8859 part 5: Latin-5
JIS-EUC JISX0208 #JAPANESE: EUC excluding JIS X 0212 Kanji
JIS-EUC+ JISX0212 #JAPANESE: EUC including JIS X 0212 Kanji
JIS-EUC-HWK JISX0201-K JAPANESE: 1/2 width katakana for JIS-EUC
JIS-EUC2 JISX0208 #JAPANESE: EUC fixed width excluding JIS X 02
 12 kanji
JIS-EUC2+ JISX0212 #JAPANESE: EUC fixed width including JIS X 02
 12 kanji
JIS-EUC2-C0 C0-CONTROLS JAPANESE: EUC2 fixed width C0 control chars
JIS-EUC2-C1 C1-CONTROLS JAPANESE: EUC fixed width C1 control chars
JIS-EUC2-HWK JISX0201-K JAPANESE: EUC fixed width representation of 1
 /2 width katakana
JIS-EUC2-MARKS JIS-EUC2-MARKS JAPANESE: EUC2 fixed width mark characters (e
 xternal form)
JIS-EUC2-ROMAN JISX0201-A JAPANESE: EUC fixed width representation of J
 IS-ROMAN
JIS-ROMAN JISX0201-A #JAPANESE: Variant of 7-bit ASCII
JISX0201 JISX0201-K #JAPANESE: Single-byte set, 1/2 width katakana
 + ASCII
KOI8-R KOI8-R #KOI8-R Russian/Cyrillic set
KSC5601 KSC5601 #KOREAN: Wansung code as described by KS C
5601
 -1987
MAC-GREEK MAC-GREEK #Apple Macintosh Greek Repertoire (like
ISO8859-7)
MAC-GREEK2 MAC-GREEK2 #Apple Macintosh Greek Repertoire based on
APPLE II
MAC-ROMAN MAC-ROMAN #Apple Macintosh Roman character set, based on
 ASCII
MNEMONICS #ASCII mnemonics for many Unicodes, based on
 UTF8
MNEMONICS-1 ISO8859-1 #As for MNEMONICS, but ISO8859-1 capable
MS1250 MS1250 #MS Windows code page 1250 (Latin 2)
MS1251 MS1251 #MS Windows code page 1251 (Cyrillic)
MS1252 MS1252 #MS Windows code page 1252 (Latin 1)
MS1253 MS1253 #MS Windows code page 1253 (Greek)
MS1254 MS1254 #MS Windows code page 1254 (Turkish)
MS1255 MS1255 #MS Windows code page 1255 (Hebrew)
MS1256 MS1256 #MS Windows code page 1256 (Arabic)
PC1040 PC1040 #PC DOS code page 1040 (Korean)
PC1041 PC1041 #PC DOS code page 1041 (Japanese)
PC437 PC437 #PC DOS code page 437 (US)
PC850 PC850 #PC DOS code page 850 (Latin 1)
PC852 PC852 #PC DOS code page 852 (Latin 2)
PC855 PC855 #PC DOS code page 855 (Cyrillic)
PC857 PC857 #PC DOS code page 857 (Turkish)
PC860 PC860 #PC DOS code page 860 (Portuguese)
PC861 PC861 #PC DOS code page 861 (Icelandic)
PC863 PC863 #PC DOS code page 863 (Canada-Fr)
PC864 PC864 #PC DOS code page 864 (Arabic)
PC865 PC865 #PC DOS code page 865 (Nordic)
PC866 PC866 #PC DOS code page 866 (Cyrillic)
PC869 PC869 #PC DOS code page 869 (Greek)
PIECS PIECS #PI and PI/open Extended Character Set
PRIME-SHIFT-JIS PJISX0208 #JAPANESE: Shift-JIS main map (Prime variant)

Appendix C: NLS quick reference

96

SHIFT-JIS SJISX0208 #JAPANESE: Shift-JIS main map
TAU-SHIFT-JIS TJISX0208 #JAPANESE: Shift-JIS main map (Tau variant)
TIS620 TIS620-A #THAI: standard TIS 620 ("Thai ASCII")
TIS620-B TIS620-B Non-spacing characters part of TIS620 (Thai)

Parent topic: NLS quick reference

UniVerse locales
Locales are supplied with UniVerse.

The following list shows the locales, the territory that uses each locale, and the relevant language.

NLS.LC.ALL.....
Description..

AR-SPANISH Territory=Argentina, Language=Spanish
AT-GERMAN Territory=Austria, Language=German
AU-ENGLISH Territory=Australia, Language=English
BE-DUTCH Territory=Belgium, Language=Dutch
BE-FRENCH Territory=Belgium, Language=French
BE-GERMAN Territory=Belgium, Language=German
BG-BULGARIAN Territory=Bulgaria, Language=Bulgarian
BO-SPANISH Territory=Bolivia, Language=Spanish
BR-PORTUGUESE Territory=Brazil, Language=Portuguese
CA-ENGLISH Territory=Canada, Language=English
CA-FRENCH Territory=Canada, Language=French
CH-FRENCH Territory=Switzerland, Language=French
CH-GERMAN Territory=Switzerland, Language=German
CH-ITALIAN Territory=Switzerland, Language=Italian
CL-SPANISH Territory=Chile, Language=Spanish
CN-CHINESE Territory=China (PRC), Language=Chinese
CO-SPANISH Territory=Colombia, Language=Spanish
CR-SPANISH Territory=Costa Rica, Language=Spanish
CZ-CZECH Territory=Czech Republic, Language=Czech
DE-GERMAN Territory=Germany, Language=German
DK-DANISH Territory=Denmark, Language=Danish
DO-SPANISH Territory=Dominican Republic, Language=Spanish
EC-SPANISH Territory=Ecuador, Language=Spanish
EE-ESTONIAN Territory=Estonia, Language=Estonian
ES-SPANISH Territory=Spain, Language=Spanish
EV-SPANISH Territory=El Salvador, Language=Spanish
FI-FINNISH Territory=Finland, Language=Finnish
FO-FAEROESE Territory=Faeroe Islands, Language=Faeroese
FR-FRENCH Territory=France, Language=French
GB-ENGLISH Territory=UK, Language=English
GL-GREENLANDIC Territory=Greenland, Language=Greenlandic
GR-GREEK Territory=Greece, Language=Greek
GT-SPANISH Territory=Guatemala, Language=Spanish
HN-SPANISH Territory=Honduras, Language=Spanish
HR-CROATIAN Territory=Croatia, Language=Croatian
HU-HUNGARIAN Territory=Hungary, Language=Hungarian
IE-ENGLISH Territory=Ireland, Language=English
IL-ENGLISH Territory=Israel, Language=English
IL-HEBREW Territory=Israel, Language=Hebrew
IS-ICELANDIC Territory=Iceland, Language=Icelandic
IT-ITALIAN Territory=Italy, Language=Italian
JP-JAPANESE Territory=Japan, Language=Japanese
KP-KOREAN Territory=Democratic People's Republic of Korea
 (NORTH),

Unicode blocks

97

Language=Korean
KR-KOREAN Territory=Republic of Korea (SOUTH),
Language=Korean
LT-LITHUANIAN Territory=Lithuania, Language=Lithuanian
LV-LATVIAN Territory=Latvia, Language=Latvian
MX-SPANISH Territory=Mexico, Language=Spanish
NL-DUTCH Territory=Netherlands, Language=Dutch
NO-NORWEGIAN Territory=Norway, Language=Norwegian
NZ-ENGLISH Territory=New Zealand, Language=English
PA-SPANISH Territory=Panama, Language=Spanish
PE-SPANISH Territory=Peru, Language=Spanish
PL-POLISH Territory=Poland, Language=Polish
PT-PORTUGUESE Territory=Portugal, Language=Portuguese
RO-ROMANIAN Territory=Romania, Language=Romanian
RU-RUSSIAN Territory=Russia, Language=Russian
SE-SWEDISH Territory=Sweden, Language=Swedish
SI-SLOVENIAN Territory=Slovenia, Language=Slovenian
TR-TURKISH Territory=Turkey, Language=Turkish
TW-CHINESE Territory=Taiwan, Language=Chinese
US-ENGLISH Territory=USA, Language=English
UY-SPANISH Territory=Uruguay, Language=Spanish
VE-SPANISH Territory=Venezuela, Language=Spanish
ZA-ENGLISH Territory=South Africa, Language=English

Parent topic: NLS quick reference

Unicode blocks
Unicode is divided into blocks of related characters. These correspond approximately to the scripts
used for different families of languages.

Characters allocated within blocks have a code value and a description. The description must use
uppercase A through Z, hyphen, and digits 0 through 9 only. In UniVerse NLS, the blocks are allocated
numbers starting from 1. The main blocks are shown in the following table.

Block description Start End Usage

1 CONTROL SET 0 0000 001F ASCII control characters
2 BASIC LATIN 0020 007F ASCII printing characters
3 CONTROL SET 1 0080 009F Second control character

set from ISO8859-n
4 LATIN-1

SUPPLEMENT
00A0 00FF Rest of ISO8859-1 (Latin-1)

printing characters
5 LATIN EXTENDED-

A
0100 017F Mainly East European, other

ISO8859/n
10 BASIC GREEK 0370 03CF Greek alphabet, based on

ISO8859/7
12 CYRILLIC 0400 04FF Russian alphabet and

related languages
16 BASIC HEBREW 05D0 05EA Hebrew alphabet, based on

ISO8859-8
18 BASIC ARABIC 0600 0652 Based on ISO8859/6
35 THAI 0E00 0E7F Thai language, based on

TIS620

Appendix C: NLS quick reference

98

Block description Start End Usage

69 CJK SYMBOLS
AND
PUNCTUATION

3000 303F For Chinese, Japanese, and
Korean

70 HIRAGANA 3040 309F Japanese syllabary
71 KATAKANA 30A0 30FF Japanese syllabary
97 CJK UNIFIED

IDEOGRAPHS
4E00 9FFF Unification area for

Chinese-derived characters
102 HANGUL

SYLLABLES
AC00 D7A3 Korean-only characters

107 PRIVATE USE
AREA

E000 F8FF User-defined

116 HALFWIDTH /
FULLWIDTH
FORMS

FF00 FFEF Mainly for CJK use

Parent topic: NLS quick reference

	Contents
	Chapter 1: About National Language Support (NLS) mode
	Internal character set
	About Unicode

	Mapping
	Enabling NLS mode
	The NLS configurable database
	Maps
	Locales
	National conventions

	How NLS mode works

	Chapter 2: Installing and configuring NLS
	Setting up the NLS map for the console
	Removing NLS
	NLS shared memory segments on UNIX systems
	Making a plan
	Setting configurable parameters
	Editing the uvconfig file

	Setting default maps and locales
	Moving NLS map and locale definitions

	Setting locales
	UVLANG environment variable
	System locale

	Associating maps with devices
	Mapping in the spool queue
	Setting file maps
	Setting terminal maps
	Retrieving terminal settings

	Setting maps tapes and other devices
	Updating accounts
	Configuring NLS for client programs
	Maps for client programs
	Configuring the code page on multibyte Windows platforms

	Locales for client programs

	Configuration checklist

	Chapter 3: Maps
	How maps work
	Main maps and input maps
	Base maps
	Creating a new map

	Map naming conventions
	Creating new maps
	Creating a map description
	Example of a map description record
	Creating a map table
	Example of a map table record

	Building and installing maps
	Multibyte NLS maps and system delimiters
	Handling extra characters
	Defining new characters

	Maps and files
	Assigning maps to new files
	Modifying file maps

	Chapter 4: Locales
	How locales work
	Creating conventions
	Creating new locales
	Naming locales

	Format of convention records
	Time records
	Defining era names
	Example

	Numeric records
	Monetary records
	Ctype records
	Collate records

	Collating
	How UniVerse collates
	Example of accented collation
	Example of cased collation
	Shared weights and blocks
	Contractions and expansions
	Editing weight tables
	Calculating the overall weight
	Example of a weight table

	Using locales
	Retrieving locale settings
	Saving and restoring locales
	Listing current locales
	Changing current locales

	Chapter 5: NLS in UniVerse BASIC programs
	How UniVerse BASIC is affected
	Using the UVNLS.H Include file
	String length
	Length of record IDs

	Display length in BASIC
	Finding the display length of a string
	Formatting a string in display positions
	Folding strings using display positions
	Inputting using display length with INPUTDP
	Block size always in bytes
	The REMOVE pointer and multibyte character sets

	Maps in UniVerse BASIC
	Determining a file’s map name
	Maps for source files

	Maps and devices
	Maps for auxiliary devices
	@ Function codes for terminal and auxiliary maps
	Printing previously mapped data with UPRINT
	Finding the map associated with a print channel
	Maps for UNIX pipes

	Unmappable characters
	Unmappable characters and WRITE statements
	Unmappable characters and READ statements

	Multinational characters in UniVerse BASIC
	Editing multinational characters
	Generating characters in external format
	Generating system delimiters and the null value

	Generating characters in internal format
	CHAR and SEQ in NLS mode

	Internal and external string conversion
	NLS conversion code
	MU0C conversion code
	Other conversion codes

	Displaying records by character value
	Exchanging character values
	Case inversion and deadkey characters

	BASIC and locales
	Retrieving locale settings
	Saving and restoring locales
	Changing the current locale

	Chapter 6: NLS in client programs
	Client programs
	Maps
	Locales
	System delimiters and the null value

	UniObjects
	NLSLocale object

	UniObjects for Java and UniObjects for .NET
	UniNLSMap object
	UniNLSLocale object

	InterCall functions
	UCI programs
	Connecting to the server
	Requesting an SQLConnect
	Setting the map and locale
	Values in the UCI configuration file
	Interpreting the map name
	Interpreting the locale name
	Using SQLGetInfo

	BCI programs
	Connecting to the server
	Requesting an SQLConnect
	Setting the locale
	Values in the uvodbc.config file

	Interpreting the locale name
	Using SQLGetInfo

	GCI subroutines
	Specifying maps for GCI subroutines
	Data types for multibyte characters

	Chapter 7: NLS administration menus
	Unicode menu
	Mappings menu
	Locales menu
	Categories menu
	Installation menu

	Appendix A: The NLS database
	Appendix B: National convention hooks
	General hook mechanism
	Support from UniVerse
	Memory management
	Using hooks in UniVerse
	Create a GCI definition for the initialization routine
	Compile the hook library
	Build the hook library
	Test the hooks
	Install the hook library

	NLS hook interface definitions
	Hook functions

	Appendix C: NLS quick reference
	UniVerse commands
	UniVerse BASIC statements and functions
	Map tables
	UniVerse locales
	Unicode blocks

